
Efficient Index Maintenance for Effective Resistance
Computation on Evolving Graphs

MEIHAO LIAO, Beijing Institute of Technology, China
CHENG LI, Beijing Institute of Technology, China
RONG-HUA LI, Beijing Institute of Technology, China

GUOREN WANG, Beijing Institute of Technology, China

In this paper, we study a problem of index maintenance on evolving graphs for effective resistance computation.

Unlike an existing matrices-based index, we show that the index can be efficiently maintained by directly

preserving samples of random walks and loop-erased walks. This approach not only enables efficient storage

and rapid query response but also supports effective maintenance.We propose a novel approach to convert edge

updates into landmark node updates. Building upon this, we present two new update algorithms for random

walk and loop-erased walk samples respectively. Both algorithms update samples without requiring complete

resampling, ensuring accuracy and high efficiency. A particularly challenging and innovative technique

involves updating loop-erased walks. Here we develop a novel and powerful cycle decomposition technique

for loop-erased walks, enabling us to update samples at the cycle level rather than the node level, significantly

enhancing efficiency. Furthermore, we show that both of our methods achieve an 𝑂 (1) time complexity per

edge update in real-world graphs under a mild assumption. We conduct extensive experiments using 10 large

real-world datasets to evaluate the performance of our approaches. The results show that our best algorithm

can be up to two orders of magnitude faster than the baseline methods.

CCS Concepts: • Networks → Network algorithms; • Mathematics of computing → Probabilistic
algorithms.

Additional Key Words and Phrases: effective resistance; dynamic algorithm; index maintenance

ACM Reference Format:
Meihao Liao, Cheng Li, Rong-Hua Li, and Guoren Wang. 2025. Efficient Index Maintenance for Effective

Resistance Computation on Evolving Graphs. Proc. ACMManag. Data 3, 1 (SIGMOD), Article 36 (February 2025),

27 pages. https://doi.org/10.1145/3709686

1 Introduction
Effective resistance [58] computation is a fundamental problem in graph data management, capable

of measuring node similarity and serving as a distance metric [12, 20, 33, 35]. It finds extensive

applications in node similarity query [35, 37, 45, 65], robust routing [56], geo-social network cluster-

ing [54] and graph neural networks [39, 59]. However, existing algorithms for effective resistance

computation [35, 37, 45, 65] are primarily designed for static graphs, rendering them inefficient for

evolving graphs. Real-world graphs are rapidly changing, necessitating swift responses to incoming

queries. This dynamic nature has spurred a substantial body of research focused on the computation

of graph node similarity in dynamic environments [10, 28, 49, 50, 52, 66–68]. In theoretical computer

Authors’ Contact Information: Meihao Liao, mhliao@bit.edu.cn, Beijing Institute of Technology, Beijing, China; Cheng

Li, lichengbit@bit.edu.cn, Beijing Institute of Technology, Beijing, China; Rong-Hua Li, lironghuabit@126.com, Beijing

Institute of Technology, Beijing, China; Guoren Wang, wanggrbit@126.com, Beijing Institute of Technology, Beijing, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2025/2-ART36

https://doi.org/10.1145/3709686

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 36. Publication date: February 2025.

https://doi.org/10.1145/3709686
https://doi.org/10.1145/3709686

36:2 Meihao Liao, Cheng Li, Rong-Hua Li, & Guoren Wang

science community, dynamic effective resistance is also a vital component in solving the maximum

flow problem and some other fundamental graph algorithms [13, 14, 18, 21, 24, 31, 57].

However, even on static graphs, computing effective resistance poses a significant challenge due

to its reliance on intensive matrix computations. Consequently, numerous studies have concentrated

on developing approximate algorithms using techniques such as sampling random walks [45, 65]

and loop-erased random walks [35, 37]. Among all existing solutions, the state-of-the-art (SOTA)
approach is an index-based approach with an elegant multiple landmarks technique [37]. Given a

graph G = (V, E) with Laplacian matrix L, they first divide the node setV intoU∪V𝑙 , whereV𝑙 is

the landmark node set andU is the remaining node set. Based on the concept of Schur complement

[9], they present new formulas to compute 𝑟 (𝑠, 𝑡) in terms of elements of L−1

UU , the inverse of the
sub-matrix of L indexed by rows and columns corresponding toU, along with two pre-computed

matrices that serve as an index. Such a matrices-based index takes 𝑂 (𝑛 · |V𝑙 |) space, and it can be

efficiently constructed by samplingV𝑙 -absorbed random walks orV𝑙 -absorbed loop-erased walks

[9]. However, this index-based approach is inefficient for dynamic graphs. When the underlying

graph evolves, it is necessary to re-compute the index from scratch using sampling techniques.

To address this issue, in this paper, we propose two new index methods, namely RWIndex
and LEIndex respectively, which directly maintain the random walk or loop-erased random walk

samples, rather than store the matrices as [37]. We show that both RWIndex and LEIndex not only
enable efficient storage and rapid query response but also support effective maintenance.

Specifically, to maintain both RWIndex and LEIndex in evolving graphs, we develop a novel

approach that transform the operations of handling a single edge update to the operations of

handling at most two landmark node updates. We show that the operations of updating landmark

nodes can be efficiently implemented by truncating or expanding the random walk and loop-erased

random walk samples, making the procedure of index maintenance highly efficient. A striking

feature of our approach is that it only needs to maintain a small portion of random walk or

loop-erased random walk samples that are related to the two updated landmark nodes, without

re-draw the entire random walk or loop-erased random walk samples from scratch. We prove that

our approach to maintain both RWIndex and LEIndex can be performed in 𝑂 (1) time per edge

update in real-world graphs, under the same mild assumption as [37]. Here, 𝑂 (·) notation hides

polylogarithmic (poly log𝑛) factors.

In our index maintenance approach, a particularly challenging and innovative technique in-

volves updating the loop-erased random walk samples. We develop a novel and powerful cycle

decomposition technique that decomposes loop-erased random walks into cycles and spanning

forests. These cycles are shown to form a directed acyclic graph (DAG), which proves beneficial for

designing efficient update algorithms. Specifically, leveraging this property allows us to update

our loop-erased random walk samples at the cycle level rather than the node level, resulting in a

significant improvement in efficiency.

We conducted extensive experiments to evaluate the performance of our approach. The results

indicate that both of our proposed index structures RWIndex and LEIndex enable more efficient

updates compared to re-sampling methods. Among the solutions we developed, LEIndex stands
out, achieving rapid index construction and fast query response time, while significantly reducing

update costs compared to RWIndex. Notably, within the large social network LiveJournal, which
comprises 4 million nodes and 35 million edges, LEIndex demonstrated its efficiency with an average

update time of only 23 seconds. In contrast, the re-sampling approach required 9, 354 seconds,

highlighting a at least two orders of magnitude speed-up achieved by our methods. We also conduct

a case study to illustrate the utility of effective resistance for the task of link prediction. In summary,

the contributions of this paper are summarized as follows:

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 36. Publication date: February 2025.

Efficient Index Maintenance for Effective Resistance Computation on Evolving Graphs 36:3

New theoretical results. For both the RWIndex and LEIndex indexes maintenance problems, we

develop a new approach to convert the operations of edge updates to operations of landmark node

updates. We propose a novel cycle decomposition technique for updating the loop-erased random

walk samples; and we prove that all the cycles form a directed acyclic graph (DAG), which ensures

that we can update the samples at the cycle level rather than the node level, thus significantly

boosting the sample updating performance. These new theoretical contributions are anticipated to

be of independent interest.

Efficient index update algorithms. We propose two efficient index update algorithms for both

RWIndex and LEIndex. Specifically, we design an efficient algorithm for cycle decomposition of the

loop-erased walk. We show that it can be implemented efficiently with a slight modification of the

classic Wilson algorithm [63] for sampling spanning forests. Additionally, we develop algorithms

to handle the addition and removal of landmark nodes, ensuring that both RWIndex and LEIndex
can be updated within 𝑂 (1) time per edge in real-world graphs, under a mild assumption.

Extensive experiments. Extensive experiments on 10 large real-world graphs demonstrate that

our index update methods achieve performance improvements of up to two orders of magnitude

compared to the baseline methods. The results also show that our maintenance algorithm for

LEIndex is extremely efficient and match the 𝑂 (1) update time complexity in large real-world

graphs. For reproducibility purposes, the source code of this paper is available at https://github.

com/mhliao0516/LEindex.

2 Preliminaries
Given an undirected graph G = (V, E) with 𝑛 vertices and 𝑚 edges. The Laplacian matrix is

L = D − A, where D is the degree matrix (a diagonal matrix where each diagonal element is the

degree of a node) and A is the adjacency matrix. P = D−1A is the probability transition matrix. Let

0 = 𝜆1 ≤ 𝜆2 ≤ · · · ≤ 𝜆𝑛 be the eigenvalues of L, with the corresponding eigenvectors u1, · · · , u𝑛 ,
the pseudo-inverse of the Laplacian matrix is defined as L† =

∑𝑛
𝑖=2

𝜆𝑖u𝑖u𝑇𝑖 . Given two nodes 𝑠, 𝑡 , the

effective resistance is defined as 𝑟 (𝑠, 𝑡) = (e𝑠 − e𝑡)𝑇 L† (e𝑠 − e𝑡), where e𝑠 is a one-hot vector that the
𝑠-th element is 1 and other elements are 0. It is well known that the effective resistance is closely

related to the commute time of random walk on graphs [58]. That is, 𝑟 (𝑠, 𝑡) is proportional to the

expected number of steps that a random walk starting from 𝑠 , hitting 𝑡 , and then coming back to 𝑠 .

Since computing L† is challenging, calculating the effective resistance based on its definition incurs

significant costs. To overcome this challenge, existing methods [35, 37] often represent L† using its

submatrices. These submatrices relate to diverse combinatorial objects such as random walks and

spanning forests, motivating the development of efficient combinatorial sampling algorithms to

approximate the effective resistance.

An evolving graph is a graph subject to updates over time. Let G𝑡
denote the graph at time 𝑡

(𝑡 > 0). Without loss of generality, we primarily consider the case of evolving graphs with only

one edge update (edge insertion or deletion). That is, the updated graph G𝑡+1
differs from G𝑡

by a

single edge. Note that adding a node can be effectively transformed into the addition of multiple

edges; and similarly, deleting a node can be reduced to the deletion of several edges. Thus, all the

proposed techniques can also be extended to handle node updates. As the graph evolves, we adopt

a similar assumption to that in [37]. Specifically, we assume the evolving graph is rapidly mixing

(
1

1−𝜆 = 𝑂 (1), where 𝜆 is the spectral radius of P) and has a small diameter (ΔG = 𝑂 (1), where ΔG is

the diameter of G). In this paper, we study the problem of maintaining the index proposed in [37]

to support single-pair effective resistance query on evolving graphs, which is the SOTA approach

for effective resistance computation. In the following subsection, we systematically introduce the

index-based approach proposed in [37].

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 36. Publication date: February 2025.

https://github.com/mhliao0516/LEindex
https://github.com/mhliao0516/LEindex

36:4 Meihao Liao, Cheng Li, Rong-Hua Li, & Guoren Wang

2.1 Multiple landmark-based index approach
Given a landmark node subsetV𝑙 , we can partition the node setV intoV = U∪V𝑙 . Simultaneously,

matrix L can be decomposed into blocks as

[
LUU LUV𝑙

LV𝑙U LV𝑙V𝑙

]
. Then, the Schur complement L/V𝑙

is defined as L/V𝑙 = LV𝑙V𝑙
− LV𝑙UL

−1

UULUV𝑙
. To improve the efficiency of the single-landmark

appraoch [35], [37] presents the following multiple-landmark effective resistance formula.

Theorem 2.1. [37] Let p𝑢 be the 𝑢-th row of the matrix P𝑟 (P𝑓) for 𝑢 ∈ U, where p𝑢 (𝑣) is the
probability that a random walk from 𝑢 hits 𝑣 ∈ V𝑙 (the probability that in a random spanning forest
with root setV𝑙 , 𝑢 is rooted at 𝑣). Let e𝑢 be a one-hot vector such that the element indexed by 𝑢 is 1
and other elements are 0. Then,

(1) For 𝑢1, 𝑢2 ∈ U, we have

𝑟 (𝑢1, 𝑢2) = (e𝑢1
− e𝑢2

)𝑇 (L−1

UU) (e𝑢1
− e𝑢2

)

+ (p𝑢1
− p𝑢2

)𝑇 (L/V𝑙)† (p𝑢1
− p𝑢2

);
(1)

(2) For 𝑢 ∈ U, 𝑣 ∈ V𝑙 , we have

𝑟 (𝑢, 𝑣) = e𝑇𝑢 L
−1

UUe𝑢 + (p𝑢 − e𝑣)
𝑇 (L/V𝑙)† (p𝑢 − e𝑣); (2)

(3) For 𝑣1, 𝑣2 ∈ V𝑙 , we have

𝑟 (𝑣1, 𝑣2) = (e𝑣1
− e𝑣2

)𝑇 (L/V𝑙)† (e𝑣1
− e𝑣2

) . (3)

Index building. Based on Theorem 2.1, [37] first employs random walk sampling and loop-

erased random walk sampling to approximate the two matrices −L−1

UULUV𝑙
and (L/V𝑙)†. The

time complexities for sampling random walks and spanning forests are 𝜔 · ®1𝑇 (I − PUU)−1®1 and

𝜔 · Tr((I − PUU)−1), respectively, where 𝜔 is the sample size. To achieve an 𝜖-absolute error

(i.e., |𝑟 (𝑠, 𝑡) − 𝑟 (𝑠, 𝑡) | ≤ 𝜖), they show that, assuming the graph is rapidly mixing and has a small

diameter—common characteristics of real-world graphs—the sample size required for each node

in the index is only 𝑂 (1). They select the landmark set V𝑙 as a small, easy-to-hit node set (e.g.,

|V𝑙 | = 10 withV𝑙 being the highest degree nodes). Then, −L−1

UULUV𝑙
is exactly the matrix P𝑟 (P𝑓)

defined in Theorem 2.1, which can be estimated by examining the terminate nodes in random

walks from each node inU or the root nodes of each node inU in the spanning forest. The time

complexity of estimating −L−1

UULUV𝑙
is 𝜔 · |U|, which can be bounded by 𝑂 (𝑛). The 𝑣1, 𝑣2-th

element of L/V𝑙 is the number of random walks from the neighbors of 𝑣1 that hit V𝑙 by 𝑣2 (the

number of neighbors of 𝑣1 that are rooted at 𝑣2 in a random spanning forest). Thus, L/V𝑙 can be

estimated by examining the terminate nodes or root nodes. (L/V𝑙)† is then computed directly.

Since |V𝑙 | is a small constant, the time complexity of estimating L/V𝑙 (𝜔
∑

𝑣∈V𝑙
𝑑𝑣) and computing

the pseudo-inverse (𝑂 (|V𝑙 |3)) is negligible compared to sampling random walks and spanning

forests, which can be bounded by 𝑂 (𝑛) under the rapid mixing and small diameter assumptions.

These two approximate matrices are then stored as an index. Consequently, the index can be built

within near-linear time (i.e., 𝑂 (𝑛)) and the space complexity is 𝑂 (𝑛 · |V𝑙 |) = 𝑂 (𝑛) (since |V𝑙 | is a
small constant).

Query processing. Based on such an index, in the query processing stage, it is only need to

approximate several elements of L−1

UU . [37] proposesV𝑙 -absorbed walk sampling andV𝑙 -absorbed

push algorithms for this purpose. They can also be combined as a best BiPush algorithm to reduce

the variance of random walk sampling. The query processing algorithm can achieve 𝑂 (1) time

under the rapid mixing and small diameter assumption.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 36. Publication date: February 2025.

Efficient Index Maintenance for Effective Resistance Computation on Evolving Graphs 36:5

What’s new compared to [37]? In this paper, we focus on the dynamic maintenance of the indices

proposed in [37]. While the index-based approach in [37] is efficient for static graphs, maintaining

only the two approximated matrices, −L−1

UULUV𝑙
and (L/V𝑙)†, becomes insufficient for handling

dynamic updates. As the graph evolves, these matrices need to be recomputed using randomwalk or

loop-erased walk sampling, which incurs significant computational costs. To address this challenge,

we propose two novel approaches to maintain indices that compute effective resistance on evolving

graphs: one for maintaining random walk samples and another for maintaining loop-erased random

walk samples. Instead of storing the numerical values of the matrices, we modify the index structure

by directly storing the random samples. In Sections 3.1 and 4.1, we leverage the results from [37]

to determine the sample size and query complexity, demonstrating that storing random samples

does not increase space costs and maintains similar query complexity to the original approach.

More importantly, the results on index maintenance presented in Sections 3.2, 4.2 and 4.3 including

the idea of handling edge update to landmark nodes update and the novel cycle decomposition

technique for loop-erased walk trajectories, are original contributions which are not explored in

previous studies.

3 Random-walk index Maintenance
In this section, we first introduce the random walk index, which is slightly different from the index

proposed in [37], and then we propose a novel and efficient index maintenance algorithm.

3.1 A random walk index: RWIndex

Notice that to approximate−L−1

UULUV𝑙
and (L/V𝑙)†, the randomwalk sampling approach described

in [37] samplesV𝑙 -absorbed random walks from each node inU. Instead of merely maintaining

these matrices as an index, for each node in U, we sample 𝜔 V𝑙 -absorbed random walks (𝜔 is

roughly 𝑂 (1) [37]), and record all these random walk trajectories as an index. This approach is

referred to as RWIndex.
Fig. 1(b) illustrates a simple example ofRWIndex. Given a graphG shown in Fig. 1(a), suppose that

𝑣6 and 𝑣8 are the landmark nodes. RWIndex includes 7 random walks that start from all remaining

nodes until they hit (or visit) 𝑣6 or 𝑣8. For a random walk starting from 𝑢, the expected length of

theV𝑙 -absorbed random walk is the hitting time from 𝑢 toV𝑙 , denoted as ℎ(𝑢,V𝑙). As indicated in

[37], the expected space complexity for each sample is

∑
𝑢∈U ℎ(𝑢,V𝑙) = ®1𝑇 (I − PUU)−1®1. Since 𝜔

is 𝑂 (1) and ®1𝑇 (I − PUU)−1®1 is 𝑂 (𝑛) in real-life graphs, the space overhead of RWIndex is 𝑂 (𝑛).
Compared to the original matrix-based index [37] with a space complexity of 𝑂 (𝑛 · |V𝑙 |) = 𝑂 (𝑛)
(since |V𝑙 | is a small constant), RWIndex incurs no significant additional space costs.

Note that with RWIndex, there is no need to explicitly compute the matrices −L−1

UULUV𝑙
and

(L/V𝑙)† for query processing. When processing an 𝑟 (𝑠, 𝑡) query, efficient responses can be provided

directly based on stored random walk samples. For the first matrix −L−1

UULUV𝑙
, by Theorem 2.1,

we only need to compute p𝑠 and p𝑡 if they belong toU. This operation is highly efficient, involving

a quick check for each sample to determine the nodes in V𝑙 at which 𝑠 and 𝑡 terminate, with

a cost of 𝑂 (1). For the second matrix (L/V𝑙)†, we need to compute it from these random walk

samples maintained in RWIndex following the methods proposed in [37]. Specifically, for the 𝑣1,

𝑣2-th element of L/V𝑙 , we need to examine the number of random walks from the neighbors of

𝑣1 that hitV𝑙 by 𝑣2 and vice versa. This process has a time complexity of 𝑑𝑣1
+ 𝑑𝑣2

. Thus, the total

time complexity is 𝜔 · 2∑𝑣∈V𝑙
𝑑𝑣 . Computing the pseudo-inverse of the |V𝑙 | × |V𝑙 |-matrix takes

𝑂 (|V𝑙 |3) time. These time costs are negligible (as |V𝑙 | is small, e.g., |V𝑙 | = 10 [37]) compared to the

index-building process. It then remains to compute elements of L−1

UU . To achieve this, we adopt the
V𝑙 -absorbed walk technique as described in [37]. Additionally, we can employ theV𝑙 -absorbed

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 36. Publication date: February 2025.

36:6 Meihao Liao, Cheng Li, Rong-Hua Li, & Guoren Wang

V8V1

V2
V5 V4

V3

V6

V9

V7

(a) Graph G

V1 -> V5 -> V4 -> V3 -> V4 -> V5 -> V1 -> V2 -> V3 -> V2 -> V1 -> V4 -> V5 -> V4 -> V6
V2 -> V3 -> V4 -> V3 -> V2 -> V1 -> V5 -> V4 -> V5 -> V1 -> V2 -> V5 -> V4 -> V5 -> V4 ->V6
V3 -> V4 -> V3 -> V2 -> V3 -> V2 -> V1 -> V5 -> V4 -> V5 -> V1 -> V2 -> V5 -> V4 -> V5 -> V4 -> V6
V4 -> V3 -> V4 -> V5 -> V4 -> V5 -> V1 -> V5 -> V4 -> V6
V5 -> V4 -> V3 -> V4 -> V5 -> V1 -> V5 -> V4 -> V5 -> V4 -> V6
V7 -> V9 -> V7 -> V9 -> V7 -> V8
V9 -> V7 -> V9 -> V7 -> V9 -> V6

(b) An illustrative example of RWIndex

V5 -> V4 -> V3 -> V4 -> V5 -> V4 -> V5 -> V4 -> V6✂ ✂ ✂ ✂ ✂ ✂

(c) Update index after adding landmark 𝑣3 (truncate

the random walk)

V5 -> V4 -> V3 -> V4 -> V5 -> V4 -> V5 -> V4 -> V6 -> V7 -> V8

(d) Update index after removing landmark 𝑣6 (restart the

random walk)

Fig. 1. Illustration of RWIndex and landmark node update.

push method to reduce the variance, which refers to as the BiPush algorithm in [37]. The time

complexity of this part is 𝑂 (1) in real-life graphs, as shown in [37].

For maintaining the random walk samples in evolving graphs, a straightforward approach is to

resample all random walks. However, this is obviously not efficient. Below, we develop a novel and

efficient technique to maintain these random walk trajectories after an edge is updated, without

needing to resample random walks from scratch.

3.2 Maintaining RWIndex

Transforming an edge update to landmark nodes update. The challenge of updating V𝑙 -

absorbed random walk trajectories lies in ensuring that the random walks remain a valid sample
drawn from the updated graph. Due to graph updates, previously generated randomwalk trajectories

may no longer be valid for the updated graph. We circumvent this issue by transforming the edge

update into updating of landmark nodes.

Specifically, when there is an edge (𝑢, 𝑣) update (no matter insertion or deletion), we set the

two endpoints 𝑢 and 𝑣 as new landmark nodes if they are not the landmark nodes in the original

graph G𝑡
. Note that adding a new landmark node involves moving a node from the setU toV𝑙 ,

keeping the overall node set unchanged. As the landmark node setV𝑙 expands, theV𝑙 -absorbed

random walks become shorter, without altering their trajectories before they reach the updated

landmark node set. Thus, in this step, we only need to truncate certain random walk samples once

they traverse these two new landmark nodes. After that, we remove the two new landmark nodes 𝑢
and 𝑣 fromV𝑙 for the updated graph G𝑡+1

(i.e., the set of landmark nodes remains the same). Then,

on the updated graph G𝑡+1
, we draw several newV𝑙 -absorbed random walk samples starting from

𝑢 and 𝑣 . These new random walk samples are then concatenated with the previous random walk

samples that terminated at 𝑢 and 𝑣 respectively.

Note that if both 𝑢 and 𝑣 are landmark nodes in G𝑡
, no updates are needed for the random walk

samples. This is because in this case, all random walk trajectories avoid traversing the edge (𝑢, 𝑣)
(since 𝑢 and 𝑣 are landmarks), thus the update of (𝑢, 𝑣) does not affect the random walk samples.

If only the node 𝑢 (similar for 𝑣) is a landmark, we simply add 𝑣 as a new landmark node. The
processing procedure remains the same as when introducing two new landmark nodes. Compared

to the method of resampling all random walks from every node inU, our approach is much more

efficient, as it draws several random walks only from two landmark nodes. Below, we detail the
updating procedure of adding and deleting a landmark node.

Adding a landmark node 𝑣 .We begin by examining the addition of a landmark node 𝑣 fromU
toV𝑙 . The updated landmark node set (remaining node set) is denoted asV𝑡+1

𝑙
(U𝑡+1

) , while the

previous set isV𝑡
𝑙
(U𝑡

). When a landmark node 𝑣 is added, the updated sets areV𝑡+1
𝑙

= V𝑡
𝑙
∪ {𝑣}

and U𝑡+1 = U𝑡 \ {𝑣}. The addition of vertex 𝑣 into the landmark node set is expected to result

in earlier termination of some random walk samples. Each random walk passing through 𝑣 will

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 36. Publication date: February 2025.

Efficient Index Maintenance for Effective Resistance Computation on Evolving Graphs 36:7

Algorithm 1: RWIndex-add-landmark

Input: Graph G𝑡 , previous random walks R𝑡 , new landmark node 𝑣

Output: updated random walks R𝑡+1
1 for each random walk in R𝑡 that passes through 𝑣 do
2 Shorten the random walk at the first time it hits 𝑣 ;

3 return R𝑡 ;

terminate immediately upon reaching this node. Therefore, the algorithm is quite simple, as depicted

in Algorithm 1. Let R𝑡
be the RWIndex of G𝑡

. The algorithm truncates all random walks in R𝑡
that

pass through 𝑣 the first time they encounter 𝑣 . The updated random walks are then output as R𝑡+1
.

Next, we analyze the correctness and time complexity of the landmark addition operation.

Intuitively, after moving a node fromU toV𝑙 , we must update the stored random walks to ensure

they are sampled from the updated graph structure. As described in [37], the distribution of the

V𝑙 -absorbed random walks is depicted by the matrix L−1

UU . Specifically, let 𝜏V𝑙
[𝑠,𝑢] denote the

expected number of steps for aV𝑙 -absorbed random walk from 𝑠 that passes 𝑢. We can derive that

the 𝑠,𝑢-th element of L−1

UU is e𝑇𝑠 L−1

UUe𝑢 =
𝜏V𝑙 [𝑠,𝑡]

𝑑𝑢
[37]. Consequently, we first express L−1

U𝑡+1U𝑡+1 in

terms of L−1

U𝑡U𝑡 . Then, we derive the following lemma that establishes the relationship between the

distribution ofV𝑡+1
𝑙

-absorbed random walks and the distribution ofV𝑡
𝑙
-absorbed random walks.

Due to space limitations, the complete proofs are provided in [34], while we include brief sketches

for the key proofs.

Lemma 3.1. Let 𝑃𝑟 [𝑠 { V𝑙 ; 𝑣] denote the probability that aV𝑙 -absorbed walk starts from 𝑠 passes
𝑣 before hittingV𝑙 , we have: 𝜏V𝑡+1

𝑙
[𝑠,𝑢] = 𝜏V𝑡

𝑙
[𝑠,𝑢] − 𝜏V𝑡

𝑙
[𝑣,𝑢]𝑃𝑟 [𝑠 { V𝑡

𝑙
; 𝑣].

Proof sketch. Using the block matrix inverse formula:[
𝐴 𝐵

𝐶 𝐷

]−1

=

[
𝐴−1 +𝐴−1𝐵𝑆−1𝐶𝐴−1 −𝐴−1𝐵𝑆−1

−𝑆−1𝐶𝐴−1 𝑆−1

]
,

where 𝑆 = 𝐷 − 𝐶𝐴−1𝐵, we substitute 𝐴−1
with L−1

U𝑡+1U𝑡+1 to obtain elements of L−1

U𝑡U𝑡 . We first

retain the 𝑣-th row and column in L−1

U𝑡U𝑡 while representing other elements in terms of these.

Then, we express each matrix element in terms of probabilities and expected number of passes in a

V𝑙 -absorbed walk. This establishes the lemma. □
Based on Lemma 3.1, we are able to verify the correctness and analyze the time complexity of

the landmark addition operation.

Lemma 3.2. Let R𝑡+1 be the set of updatedV𝑡+1
𝑙

-absorbed random walks obtained by shortening
each random walk in the originalV𝑡

𝑙
-absorbed random walks R𝑡 according to Algorithm 1. Then, the

distribution of the updated random walks in R𝑡+1 is the same as that of theV𝑡+1
𝑙

-absorbed random
walks sampled from G𝑡+1.

Proof sketch.Moving node 𝑣 fromU toV𝑙 only affects the random walks that intersect with 𝑣 ,

truncating them at that node. According to Lemma 3.1, the distribution ofV𝑡+1
𝑙

-absorbed walks

from 𝑠 remains unchanged if 𝑣 is bypassed, and is reduced by the distribution from 𝑣 if encountered,

utilizing the memoryless property of random walks. □

Lemma 3.3. The expected time complexity of adding a landmark node 𝑣 is ℎ(𝑣,V𝑡
𝑙
)∑𝑠∈U𝑡 𝑃𝑟 [𝑠 {

V𝑡
𝑙

; 𝑣] for each sample, where ℎ(𝑣,V𝑡
𝑙
) is the hitting time from 𝑣 to V𝑡

𝑙
. In real-life graphs, this is

approximately 𝑂 (1) by our assumption.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 36. Publication date: February 2025.

36:8 Meihao Liao, Cheng Li, Rong-Hua Li, & Guoren Wang

Algorithm 2: RWIndex-remove-landmark

Input: Graph G𝑡 , a set of random walks R𝑡 , past landmark node setV𝑡
𝑙
, a landmark node 𝑣 ∈ V𝑡

𝑙

Output: updated random walks R𝑡+1
1 for each random walk in R𝑡 that terminates at node 𝑣 do
2 Restart the random walk from 𝑣 , until it hitsV𝑡

𝑙
\ {𝑣} (V𝑡+1

𝑙
);

3 return R𝑡 ;

Algorithm 3: RWIndex-add-edge
Input: Graph G𝑡 , past landmark node setV𝑡

𝑙
, new edge 𝑒 = (𝑢, 𝑣), a set of random walks R𝑡

Output: updated random walks R𝑡+1
1 if 𝑢 ∉ V𝑡

𝑙
then

2 R𝑡 ← RWIndex-add-landmark (G𝑡 , R𝑡 , 𝑢);
3 if 𝑣 ∉ V𝑡

𝑙
then

4 R𝑡 ← RWIndex-add-landmark (G𝑡 , R𝑡 , 𝑣);
5 Let G𝑡+1 denote the updated graph;

6 if 𝑢 ∉ V𝑡
𝑙
then

7 R𝑡 ← RWIndex-remove-landmark (G𝑡+1, R𝑡 ,V𝑡
𝑙
, 𝑢);

8 if 𝑣 ∉ V𝑡
𝑙
then

9 R𝑡 ←RWIndex-remove-landmark (G𝑡+1, R𝑡 ,V𝑡
𝑙
, 𝑣);

10 return R𝑡 ;

Proof sketch. When adding a landmark node 𝑣 , Algorithm 1 re-evaluates random walks by

subtracting walks passing through 𝑣 from the total expected lengths. The change in expected

lengths, according to Lemma 3.1, is quantified by ℎ(𝑣,V𝑡
𝑙
)∑𝑠∈U𝑡 𝑃𝑟 [𝑠 { V𝑡

𝑙
; 𝑣]. This is simplified

to 𝑂 (1) due to fast mixing properties and the appropriate selection ofV𝑙 . □

Removing a landmark node 𝑣 . In the scenario where a landmark node 𝑣 is moved fromV𝑙 to

U, the updated sets areV𝑡+1
𝑙

= V𝑡
𝑙
\{𝑣} andU𝑡+1 = U𝑡 ∪ {𝑣}. When a landmark node 𝑣 is shifted

fromV𝑙 toU, the random walks in R𝑡
are expected to be longer, as it becomes harder to reach

V𝑡+1
𝑙

compared toV𝑡
𝑙
. Observe that the random walks which do not terminate at 𝑣 will remain

unaffected, as they are still sampled independently and uniformly in the updated graph. Thus, we

only need to modify the random walks that terminate at 𝑣 . Algorithm 2 illustrates the pseudo-code

for removing a landmark node. Specifically, for each random walk that terminates at node 𝑣 , the

randomwalk restarts from 𝑣 and continues until it hitsV𝑡+1
𝑙

. We update these randomwalk samples

by concatenating the previous truncated random walk trajectory and the newly-sampled random

walk trajectory. To analyze the correctness and time complexity of this algorithm, we first present

a lemma similar to Lemma 3.1.

Lemma 3.4. Let 𝑃𝑟 [𝑠 { V𝑡
𝑙
(𝑣)] denote the probability that aV𝑡

𝑙
-absorbed walk starting from 𝑠

hitsV𝑡
𝑙
by node 𝑣 , we have: 𝜏V𝑡+1

𝑙
[𝑠,𝑢] = 𝜏V𝑡

𝑙
[𝑠,𝑢] + 𝜏V𝑡+1

𝑙
[𝑣,𝑢]𝑃𝑟 [𝑠 { V𝑡

𝑙
(𝑣)].

By Lemma 3.4, we can prove the correctness and analyze the time complexity of our algorithm.

Lemma 3.5. Let R𝑡+1 be the set of updated V𝑡+1
𝑙

-absorbed random walks obtained by extending
theV𝑡

𝑙
-absorbed random walks R𝑡 according to Algorithm 2. Then, the distribution of the updated

random walks R𝑡+1 is the same as that of theV𝑡+1
𝑙

-absorbed random walks sampled from G𝑡+1.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 36. Publication date: February 2025.

Efficient Index Maintenance for Effective Resistance Computation on Evolving Graphs 36:9

Lemma 3.6. The expected time complexity of removing a landmark node 𝑣 isℎ(𝑣,V𝑡+1
𝑙
)∑𝑠∈U𝑡+1 𝑃𝑟 [𝑠 {

V𝑡+1
𝑙
(𝑣)] for each sample. In real-life graphs, this is approximately 𝑂 (1) by our assumption.

It is important to note that by Lemma 3.3 and Lemma 3.6, both the landmark addition and removal

operations can be performed in 𝑂 (1) time, under the same assumption as in [37].

Adding an edge 𝑒. Armed with the two aforementioned landmark updating operations, when

an edge 𝑒 = (𝑢, 𝑣) is added to the current graph, we can convert this operation to at most two

operations of landmark addition or removal. The algorithm is depicted in Algorithm 3. It first

checks that whether 𝑢 and 𝑣 belong to the landmark node setV𝑡
𝑙
. If they do not, we add them to

the landmark node set by our landmark node addition operation described in Algorithm 1 (Lines

1-4). After that, the random walks that pass through 𝑢 and 𝑣 will be shortened the first time they

hit 𝑢 or 𝑣 . Then, we remove the added landmark node from the landmark node set (Lines 6-9). This

requires resampling some random walk samples from the newly-added landmark. According to

Lemma 3.2 and Lemma 3.5, the random walks after these operations still follow the distribution of

random walks in the updated graph. By Lemma 3.3 and Lemma 3.6, the expected time complexity

is at most ℎ(𝑢,V𝑙) + ℎ(𝑣,V𝑙) (if both 𝑢 and 𝑣 do not belong to the currentV𝑙 set), and is 𝑂 (1) in
real-life graphs.

Deleting an edge 𝑒. Interestingly, the operations of an edge deletion are the same as those of

an edge insertion (the only difference is that the updated graph G𝑡+1
in Line 5 of Algorithm 3 is

different). Specifically, when an edge 𝑒 = (𝑢, 𝑣) is deleted from the current graph, we conduct same

operations by first adding 𝑢 and 𝑣 into the landmark node set and then removing them accordingly.

The pseudo-code is exactly the same as that of Algorithm 3, and the time complexity is also the

same. Below, we provide an example to illustrate the updating operations of RWIndex.

Example 1. As shown in Fig. 1, Fig. 1(a) depicts an example graph G with 9 nodes and 14 edges,
where 𝑣6 and 𝑣8 are the landmark nodes. The RWIndex is then built as shown in Fig. 1(b). The index
contains 7 random walks starting from each node 𝑢 ∈ U until they hitV𝑙 . Many important quantities
can be estimated from such samples. When a landmark node 𝑣3 is added, the index is updated as
shown in Fig. 1(c). For simplicity, we use the random walk starting from 𝑣5 as an example. As shown in
Fig. 1(c), it terminates when it hits 𝑣3, and the length changes from 9 to 3. When a landmark node 𝑣6 is
removed, the index is updated as shown in Fig. 1(d). The random walk starting from 𝑣5 continues after
passing 𝑣6 and finally hits 𝑣8, which is the only remaining landmark node.

Comparison to the result in [18].We note that in a theoretical paper [18], there is a similar land-

mark node addition operation for a dynamic vertex sparsifier. However, our approach significantly

differs from theirs and is more practical. First, the algorithm in [18] does not support a landmark

node removal operation. This limitation can cause the landmark node set to grow larger over time

with continuous updates and queries. When a large set of nodes is updated, they re-compute the

entire index at once. Although they prove that the amortized time complexity of each update is

𝑂 (1), to ensure this bound, they set |V𝑙 | = 𝑂 (𝑚) and use a dynamic graph sparsifier [1] to maintain

the large Schur complement graph. This part is very challenging to implement efficiently as it is

primarily designed for theoretical purposes. Our method supports the operation of landmark node

removal, allowing control over the landmark node set size and ensuring that it remains a small

group of easy-to-hit nodes. Additionally, they do not provide the exact distribution of the shortened

random walk trajectories, whereas we precisely analyze the distribution of those updated random

walks.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 36. Publication date: February 2025.

36:10 Meihao Liao, Cheng Li, Rong-Hua Li, & Guoren Wang

V1 V2 V3 V4 V5 V6 V7 V8 V9

V5

V2

V4

V3

V1

V5

V4

V2

V2

V3

V5

V5

V4

V1

V4

V9

V9

V8

V7

V7

V6

V6 V4

(a) An example of LEIndex

V8V1

V2
V5 V4

V3

V6

V9

V7

(b) The corresponding spanning forest

Fig. 2. An illustrative example of LEIndex. (a) For each node𝑢, we store a stack S[𝑢] (e.g. S[𝑣1] = {𝑣5, 𝑣2, 𝑣4});
(b) A spanning forest is represented by the edges on top of each stacks.

4 Loop-erased random walk Index Maintenance
As shown in [37], the loop-erased random walk-based spanning forests sampling approach sig-

nificantly outperforms random walk sampling for index construction in terms of both time and

space efficiency. Instead of maintaining the two matrices −L−1

UULUV𝑙
as an index, an alternative

approach is to use the sampled spanning forests as an index. However, unlike the random walk

sampling technique, where our proposed algorithm in Section 3 allows efficient maintenance of

random walk samples, maintaining spanning forests is much more challenging due to their intricate

distributions and complex structural characteristics. In this section, we circumvent this challenge

by maintaining the loop-erased random walks, instead of directly maintaining the spanning forests.

Based on this idea, we propose a new stack index, called LEIndex, which compactly represents all

loop-erased random walks and, consequently, can also represent spanning forests.

4.1 The proposed LEIndex index
The loop-erased random walk is a classic method, originally proposed by Wilson [63], for sampling

spanning forests in graphs, which is widely used in graph analysis [6, 15, 26, 35–37, 46–48, 53].

We utilize the stack representation of loop-erased walks, as introduced in [63], which uses stacks

to record the trajectories of loop-erased walks. The stack representation of random walks is a

classical concept in probability theory [17]. These stacks do not follow the traditional LIFO (Last-

In-First-Out) property, as elements can be accessed from both the top and bottom. Infinite stacks

are generated from each node by independently sampling neighbors. Wilson observed in [63] that

popping cycles from the bottom of these stacks results in finite stacks, independent of the traversal

order. By applying the Wilson algorithm, we can therefore obtain a finite stack representation of

a loop-erased walk. Fig. 2(a) provides an illustrative example of the stack representation of loop-

erased walks, sampled from the graph shown in Fig. 1(a) with the root set {𝑣6, 𝑣8}. Each node inU
corresponds to a stack (e.g. S[𝑣1] = {𝑣5, 𝑣2, 𝑣4}). From the bottom of the stacks, the 𝑖-th element

of the stack for node 𝑢 records the subsequent node of 𝑢 in the loop-erased walk trajectory for

the 𝑖-th step the loop-erased walk passes node 𝑢. Fig. 3 illustrates the process of building a stack
representation of loop-erased walks. Specifically, a loop-erased walk maintains a spanning forest F
during the random walk process, starting with F initialized as the root setV𝑙 [37, 63]. Following a

fixed ordering of nodes inU (In Fig. 3, it is the increasing node ordering from 𝑣1 to 𝑣9), it begins

from the first node and simulates a randomwalk until it reachesV𝑙 . For each node𝑢 the walk passes,

it adds the subsequent neighbor of 𝑢 into S[𝑢], as shown in Fig. 3. The random walk trajectory,

with loops erased, is then added to F . This process continues from the next node not in F , stopping
the random walk until it hits F . The process terminates once all nodes inU have been added into

F . Wilson’s original proof [63] demonstrates that this process samples a spanning forest with root

V𝑙 uniformly.

The stack representation of loop-erased walks possesses several useful properties: (i) Independence.
Each stack is independent of the others, and each element in the stack of node 𝑢 is merely a

uniformly-sampled neighbor of node 𝑢. Each element within a stack is also independent of the

others. (ii) Order invariance. After the stack representation is built, we can traverse the stacks by

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 36. Publication date: February 2025.

Efficient Index Maintenance for Effective Resistance Computation on Evolving Graphs 36:11

V1 V2 V3 V4 V5 V6 V7 V8 V9

V5 V4 V3

V5

V4

V1

V8V1

V2

V5 V4

V3

V6

V9

V7

(a) step 1: 𝑣1 → 𝑣5 → 𝑣4 → 𝑣3 → 𝑣4 → 𝑣5 → 𝑣1

V1 V2 V3 V4 V5 V6 V7 V8 V9

V5

V2

V4

V3

V1

V4

V2

V3

V5

V5

V4

V1

V4

V6 V8V1

V2
V5 V4

V3

V6

V9

V7

(b) step 2: 𝑣1 → 𝑣2 → 𝑣3 → 𝑣2 → 𝑣1, 𝑣1 → 𝑣4 → 𝑣5 →
𝑣4 → 𝑣6

V1 V2 V3 V4 V5 V6 V7 V8 V9

V5

V2

V4

V3

V1

V5

V4

V2

V2

V3

V5

V5

V4

V1

V4

V9 V7

V6 V4 V8V1

V2
V5 V4

V3

V6

V9

V7

(c) step 3: 𝑣2 → 𝑣5 → 𝑣4, 𝑣3 → 𝑣5, 𝑣7 → 𝑣9

V1 V2 V3 V4 V5 V6 V7 V8 V9

V5

V2

V4

V3

V1

V5

V4

V2

V2

V3

V5

V5

V4

V1

V4

V9

V9

V8

V7

V7

V6

V6 V4 V8V1

V2
V5 V4

V3

V6

V9

V7

(d) step 4: 𝑣7 → 𝑣9, 𝑣7 → 𝑣8, 𝑣9 → 𝑣6

Fig. 3. The process of building a stack representation of loop-erased walk using the Wilson algorithm.

any ordering. The process of traversing the stacks is similar to the Wilson algorithm, with the only

difference being that we read neighbors from the stacks instead of sampling a random one. For the

first node in the ordering, since all elements are unvisited, the distribution of the trajectory from

that node until it hits F is identical to the distribution of aV𝑙 -absorbed walk trajectory from that

node. Consequently, a loop-erased walk trajectory can encode the information of |U| V𝑙 -absorbed

random walks, we can obtain |U| random walk trajectories from such set of stacks. For instance,

the random walks in Fig. 1(b) can be derived from the stack representation of loop-erased walk

illustrated in Fig. 2(a). If we traverse the stacks from 𝑣9, we obtain the trajectory 𝑣9, 𝑣7, 𝑣9, 𝑣7, 𝑣9, 𝑣6;

From 𝑣4, we obtain the trajectory 𝑣4, 𝑣3, 𝑣4, 𝑣5, 𝑣4, 𝑣5, 𝑣1, 𝑣5, 𝑣4, 𝑣6, which exactly match the random

walks from 𝑣9 and 𝑣4 shown in Fig. 1(b) respectively. Since F = V𝑙 initially, the distribution of such

a trajectory from 𝑢 in an stack representation is identical to the distribution of the V𝑙 -absorbed

walk from 𝑢. (iii) Containing a uniform spanning forest. On the top of each stack, each node points

to another node, and the graph consisting of these directed edges is acyclic, forming a spanning

forest, as illustrated in Fig. 2(b).

We store 𝜔 stack representation of loop-erased walks as illustrated in Fig. 2(a) for the estimation

of −L−1

UULUV𝑙
and (L/V𝑙)†, based on the spanning forest estimators presented in [37]. We refer to

this approach as LEIndex. The space complexity of LEIndex is 𝜔 · Tr((I−PUU)−1), which is strictly

smaller than RWIndex [37]. The stack representation is space-efficient because the random walks

share several common steps. On real-life graphs, Tr((I − PUU)−1) is 𝑂 (𝑛), and 𝜔 is 𝑂 (1), which
implies that such an index structure will not introduce too much additional space cost. For the query

process, similar to RWIndex, we also do not need to compute −L−1

UULUV𝑙
and (L/V𝑙)† explicitly.

Instead, we can efficiently answer a query using the spanning forest samples by employing the

method proposed in [37].

4.2 Cycle decomposition of LEIndex
While LEIndex offers many advantages, it is challenging to maintain the stack representationwithout
re-sampling the entire structure. Within these stacks, each element in one stack of a node may

influence the random walk trajectory of another node, as it has a probability of being passed

through by the other node in its trajectory of traversing the stacks. Note that when the landmark

node set is modified, only a small part of elements will be influenced. The most challenging aspect

is precisely identifying the segments of stack elements that require modification. For example, if

we simply remove the elements of the stack corresponding to node 𝑢, the remaining stacks can

no longer form a loop-erased walk trajectory. Similarly, if we remove the trajectory from 𝑢 to the

landmark node set V𝑙 , it will also violate the structure of the loop-erased walk trajectory. As a

result, it cannot be efficiently maintained at a node level or a stack level. Interestingly, we discover
that there is a cycle decomposition of the stack representation of the loop-erased walks through

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 36. Publication date: February 2025.

36:12 Meihao Liao, Cheng Li, Rong-Hua Li, & Guoren Wang

V1 V2 V3 V4 V5 V6 V7 V8 V9

V5

V2

V4

V3

V1

V5

V4

V2

V2

V3

V5

V5

V4

V1

V4

V9

V9

V8

V7

V7

V6

V6 V4

(a) Cycle decomposition of LEIndex

C1 C6

C2

C5C3

C4

C8

C7

(b) A cycle DAG

V1 -> V5 -> V4 -> V3 -> V4 -> V5 -> V1 -> V2 -> V3 -> V2 -> V1 -> V4 -> V5 -> V4 -> V6
V2 -> V3 -> V4 -> V3 -> V2 -> V1 -> V5 -> V4 -> V5 -> V1 -> V2 -> V5 -> V4 -> V5 -> V4 ->V6
V3 -> V4 -> V3 -> V2 -> V3 -> V2 -> V1 -> V5 -> V4 -> V5 -> V1 -> V2 -> V5 -> V4 -> V5 -> V4 -> V6
V4 -> V3 -> V4 -> V5 -> V4 -> V5 -> V1 -> V5 -> V4 -> V6
V5 -> V4 -> V3 -> V4 -> V5 -> V1 -> V5 -> V4 -> V5 -> V4 -> V6
V7 -> V9 -> V7 -> V9 -> V7 -> V8
V9 -> V7 -> V9 -> V7 -> V9 -> V6

(c) Cycle decomposition of the random walks derived

from the LEIndex
Fig. 4. Cycle decomposition of LEIndex. (a) LEIndex
can be decomposed into cycles; (b) All cycles form a
DAG; (c) The random walks derived by LEIndex can
also be decomposed into cycles.

V1 V2 V3 V4 V5 V6 V7 V8 V9

V5

V2

V4

V2

V3

V5

V5

V4

V1

V4

V9

V9

V8

V7

V7

V6

V6 V4

(a) Updated LEIndex after

adding landmark 𝑣2 (truncate

the stacks)

C1 C6

C2

C5C3

C4

C8

C7

(b) Updated cycle

graph after adding

landmark 𝑣2

V1 V2 V3 V4 V5 V6 V7 V8 V9

V5

V2

V4

V3

V1

V5

V4

V2

V2

V3

V5

V5

V4

V1

V4

V9

V9

V8

V7

V7

V6

V6 V4

V7

V6

V9

(c) Updated stack after remov-

ing landmark 𝑣8 (expand the

stacks)

C1 C6

C2

C5C3

C4

C8

C7

C9

(d) Updated cycle

graph after remov-

ing landmark 𝑣8

Fig. 5. LEIndex maintenance after landmark update.

modifications to the Wilson algorithm [63], allowing for efficient maintenance of loop-erased walk

trajectories at a cycle level.

Cycle decomposition of LEIndex.Observe the stack representation of loop-erased walks illustrated
in Fig. 2(a). Except for the top elements of the stacks, which form a spanning forest, all other elements

appear due to passing loops. When a loop occurs in the random walk process, the top of the stacks

of the nodes through which the loop passes will be covered by the subsequent random walk process,

implicitly storing a cycle within the stacks. Note that different orders of traversing the stacks may

lead to different cycle entrances, but all the random walks derived from the loop-erased walks share

these cycles. Consequently, the loop-erased walk trajectory can be decomposed into a set of cycles

and a spanning forest stored at the top of the stacks. Specifically, for each element in the stack
representation of the loop-erased walk, we formally store three additional values (𝑢,𝐶, ID[𝑢,𝐶]): (i)
𝑢 denotes that the element belongs to the stack of node 𝑢; (ii) 𝐶 denotes the cycle 𝐶 that contains

that element; (iii) ID[𝑢,𝐶] denotes that the element is the ID[𝑢,𝐶]-th element of the stack of 𝑢.

Here, a cycle refers to a simple cycle in which no node appears twice. An illustrative example is

provided in Fig. 4(a). In this example, the stack representation of a loop-erased walk contains eight

cycles. For instance, for the first element of the stack of 𝑣1, which points to 𝑣5 in the loop-erased

walk trajectory, we store (𝑣1,𝐶2, 1) as additional information of the cycles. The cycle decomposition

can also be applied to the random walks derived from the stack representation of the loop-erased

walks, establishing a one-to-one correspondence between the cycles in the stack representation and

those in the random walk trajectories. This correspondence is illustrated in Fig. 4(a) and Fig. 4(c),

where the cycles are depicted in the same color in both the stacks and the random walk trajectories.

Moreover, we find that there is a topological ordering among the cycles in the stacks. This means

that regardless of the node traversal order, a cycle on the top of the stacks can only be completely

visited after the cycle on the bottom has been fully traversed. In a loop-erased walk S, let the cycle
set be denoted by C = {𝐶1, · · · ,𝐶 | C | }. A directed acyclic graph (DAG) is a directed graph with no

cycles, and it can define several topological orderings over a set. We find that the cycles naturally

form a DAG, which is useful for designing dynamic algorithms.

Lemma 4.1. Let GC denote the graph where the node set is C, for any two cycles 𝐶𝑖 ,𝐶 𝑗 , there is an
edge from 𝐶𝑖 to 𝐶 𝑗 if and only if there exists a node that satisfies 𝑢 ∈ 𝐶𝑖 and 𝑢 ∈ 𝐶 𝑗 , and in the stack

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 36. Publication date: February 2025.

Efficient Index Maintenance for Effective Resistance Computation on Evolving Graphs 36:13

Algorithm 4: Cycle decomposition of LEIndex
Input: Graph G, landmark node set V𝑙

Output: A set of stacks S[𝑢] for 𝑢 ∈ U, a cycle graph G𝐶 , a spanning forest F
1 S[𝑢] ← ∅ for 𝑢 ∈ U, G𝐶 ← ∅;
2 Seen[𝑢] ← False, Next[𝑢] ← ∅ for 𝑢 ∈ V;

3 InTree[𝑢] ← False for 𝑢 ∈ U, InTree[𝑢] ← True for 𝑢 ∈ V𝑙 ;

4 for each node 𝑢 ∈ U do
5 cur← 𝑢;

6 while !InTree[cur] do
7 if Seen[cur] then
8 finder← cur,𝐶 ← ∅;
9 do
10 𝐶.pushback(finder, S[finder] .𝑠𝑖𝑧𝑒 ()) ;
11 S[finder] .pushback(𝐶) ;
12 Seen[finder] ← False;
13 finder← Next[finder];
14 while finder! = cur;
15 add cycle𝐶 to C;
16 Seen[cur] ← True;
17 Next[cur] ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (cur) ;
18 cur← Next[cur];
19 cur← 𝑢;

20 while !InTree[cur] do
21 InTree[cur] ← True, cur← Next[cur];

22 return S[𝑢] for 𝑢 ∈ U, G𝐶 , Next[𝑢] for 𝑢 ∈ V;

of node 𝑢, ID[𝐶𝑖 , 𝑢] = ID[𝐶 𝑗 , 𝑢] + 1. Then, GC is a DAG which records topological orderings over the
cycle set C.
Proof sketch. Assume for contradiction that a cycle exists in GC between cycles 𝐶𝑖 and 𝐶 𝑗 . If

such a cycle exists, nodes 𝑢 and 𝑣 in both 𝐶𝑖 and 𝐶 𝑗 would have conflicting traversal orders,

ID[𝐶𝑖 , 𝑢] > ID[𝐶 𝑗 , 𝑢] and ID[𝐶𝑖 , 𝑣] < ID[𝐶 𝑗 , 𝑣], creating an impossible loop. This contradiction

shows that GC must be acyclic, thus proving it is a DAG. □
For two cycles 𝐶𝑖 ,𝐶 𝑗 ∈ C, we define a cycle 𝐶 𝑗 is at the bottom of 𝐶𝑖 , if there is a path from

𝐶𝑖 to 𝐶 𝑗 in GC . Conversely, a cycle 𝐶 𝑗 is on the top of 𝐶𝑖 if there is a path from 𝐶 𝑗 to 𝐶𝑖 in GC .
The DAG built from the example stack representation of loop-erased walk in Fig. 4(a) is shown in

Fig. 4(b). For instance, there is a path from𝐶6 to𝐶4, which means that𝐶4 must be completely visited

before 𝐶6 is fully traversed. Given such a topological ordering, when a cycle changes as the graph

evolves, only the cycles on the top of that cycle can be influenced, while the cycles at the bottom of

it remain unchanged. The remaining problem is how to construct such a DAG. Interestingly, we
show that it can be obtained simultaneously with the sampling of the loop-erased walk through a

slight modification of the Wilson algorithm.

The pseudo-code of the cycle decomposition algorithm is outlined in Algorithm 4. At a high level,

our algorithm conducts similar operations to the Wilson algorithm, while we detect cycles during

the sampling process. Once a cycle is detected, it is recorded in the stacks by storing the cycle ID.
The cycle DAG will be stored implicitly in the stacks without introducing too much additional

cost. Specifically, similar to the Wilson algorithm used in [63], we use a vector Next[𝑢] for 𝑢 ∈ V
to record the next node on top of the stack of 𝑢. During the sampling process, it will only record

the top element of the stacks. Ultimately, it will store 𝑛 − |V𝑙 | edges, forming a spanning forest F
with root setV𝑙 . We also use a vector InTree[𝑢] for 𝑢 ∈ V to record whether the node has been

added to F . Initially, InTree[𝑢] is False for 𝑢 ∈ U and True for 𝑢 ∈ V𝑙 (Line 3). Then, it follows the

Wilson algorithm to simulate random walks from nodes that are not added to F , until they hit F
(Line 6-18). After the random walk stops, the loops are erased (Line 20-21). Specifically, we use an

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 36. Publication date: February 2025.

36:14 Meihao Liao, Cheng Li, Rong-Hua Li, & Guoren Wang

Algorithm 5: LEIndex-add-landmark

Input: Graph G, landmark node set V𝑙 , new landmark node 𝑣, a loop-erased walk trajectory S𝑡 , a spanning forest F𝑡 stored in a

vector Next, cycle set C𝑡
Output: Updated loop-erased walk trajectory S𝑡+1 , updated spanning forest F𝑡+1 , updated cycle set C𝑡+1

1 StackSize[𝑢] ← S𝑡 [𝑢].size() for 𝑢 ∈ U𝑡
;

2 𝐶 ← the first cycle in S𝑡 [𝑢];
3 Q ← ∅, Q.push(𝐶) ;
4 visitedCycle[𝐶] ← False for𝐶 ∈ C𝑡 ;
5 while Q is not empty do
6 𝐶 ← Q.pop();
7 visitedCycle[𝐶] ← True, C𝑡 ← C𝑡 \ {𝐶 };
8 for each node 𝑢 ∈ 𝐶 do
9 if ID[𝑢,𝐶] < StackSize[𝑢] then
10 Next[𝑢] ← next node of 𝑢 in cycle𝐶 ;

11 StackSize[𝑢] ← ID[𝑢,𝐶];
12 𝐶𝑛𝑒𝑥𝑡 ← S𝑡 [𝑢] [ID[𝑢,𝐶] + 1];
13 if !visitedCycle[𝐶𝑛𝑒𝑥𝑡] then
14 Q.push(𝐶𝑛𝑒𝑥𝑡);

15 for 𝑢 ∈ U𝑡+1 do
16 S𝑡 .erase(StackSize[𝑢], S𝑡 [𝑢] .𝑠𝑖𝑧𝑒 ()) ;
17 return S𝑡 , Next, C𝑡 ;

additional vector Seen to detect cycles. Initially, Seen[𝑢] is set to False for 𝑢 ∈ V . For every node 𝑣

encountered during the walk, Seen[𝑣] is marked as True (Line 16). Thus, if we meet a node 𝑣 with

Seen[𝑣] = True, a cycle is detected. We use an auxiliary variable finder to trace the cycles, and

mark all nodes in that cycle with Seen[𝑣] = False for the subsequent cycle detection (Lines 8-14).

Then, the cycle 𝐶 is added to the cycle set C (Line 15). For each cycle 𝐶 , we store each node in the

order they are visited, and we also record ID[𝑢,𝐶] which indicates that the cycle is recorded as the

ID[𝑢,𝐶]-th element of the stack of 𝑢 (Line 10). In the stacks, instead of storing the next neighbor,

we only need to store the cycle ID since the neighbor is recorded in the cycles (Line 11). Notice

that the DAG GC is implicitly stored in the stacks S, as shown in Fig. 4(a) and Fig. 4(b). For each

cycle 𝐶 in C, we can identify the out-neighbors of 𝐶 by tracing all nodes 𝑢 in the cycle, where

its neighbor cycles are stored in S[𝑢] [ID[𝑢,𝐶] + 1]. The process of building the cycle graph is

illustrated in Fig. 3 where cycles are depicted by different color. Since these additional operations

do not introduce significant additional cost, the time complexity of the modified algorithm remains

the same as the original Wilson algorithm, i.e., 𝑂 (Tr((I − PUU)−1)) [37]. For real-life graphs, it
takes 𝑂 (𝑛) time to build our LEIndex index.

4.3 Maintaining LEIndex

Transforming an edge update to landmark nodes update. Similar to RWIndex, updating the

stack representation requires ensuring that the loop-erased walk remain a valid sample drawn from

the updated graph. Due to graph updates, previously generated stack representation may no longer

be valid for the updated graph. We also circumvent this issue by transforming the edge update into

updating of landmark nodes.

Specifically, when there is an edge (𝑢, 𝑣) update (no matter insertion or deletion), we set the

two endpoints 𝑢 and 𝑣 as new landmark nodes if they are not the landmark nodes in the original

graph G𝑡
. As the landmark node setV𝑙 expands, the stack representation become smaller, but only

a small part of the stacks need to be modified. We remove the cycles that are on top of the first

cycles in the stacks of the new landmark nodes. After that, we remove the two new landmark nodes
𝑢 and 𝑣 fromV𝑙 for the updated graph G𝑡+1

. Then, on the updated graph G𝑡+1
, we continue the

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 36. Publication date: February 2025.

Efficient Index Maintenance for Effective Resistance Computation on Evolving Graphs 36:15

loop-erased walk process from 𝑢 and 𝑣 , until it obtains a spanning forest on top of the stacks. The

new elements in the stacks are then concatenated with the previous stacks. Below, we detail the

updating procedure of adding and deleting a landmark node.

Adding a landmark node 𝑣 . After moving a landmark node 𝑣 fromU toV𝑙 , we need to ensure

that the updated S𝑡+1 is sampled according to the updated graph G𝑡+1
. As discussed before, instead

of updating the stacks at the stack level or node level, our method benefits from updating the stacks

at the cycle level. We aim to complete the update by exploring only a small, necessary part of the

stack S𝑡 . Since 𝑣 is moved fromU toV𝑙 , the stack of 𝑣 should be removed. This will influence the

cycles stored in the stack of 𝑣 . In the DAG GC , if we remove cycle𝐶 , all cycles on the top of 𝐶 must

also be removed, as they can be visited only after 𝐶 is fully traversed. The top element of stack 𝑢

will be replaced by the element corresponding to the last cycle removed from stack S[𝑢].
The pseudo-code is outlined in Algorithm 5. At a high level, our algorithm conducts BFS traversal

over GC from the first cycle stored in 𝑆 [𝑣] and remove all the cycles visited. Considering the data

structure we used in Algorithm 4 to implicitly store GC in the stack representation S𝑡 , compared to

maintaining random walks where we need to find the precise position each random walk passes

through a specific node 𝑣 , here we only need to traverse the stacks from 𝑣 . Our goal is to remove

all the cycles on the top of the first cycle in S[𝑢]. Thus, we perform a BFS traversal over the cycle

graph GC . Starting from the first cycle 𝐶0 in S𝑡 [𝑢] (Line 2), the algorithm uses a queue Q and a

boolean vector visitedCycle to implement the BFS process (Line 3-4). It traverses all the cycles on
the top of 𝐶0 in GC (Line 5-14). For each stack S[𝑢], in addition to keeping cycles, we maintain an

extra element as the Next[𝑢]. Thus, we use a vector StackSize to record the current top of each

stack. For each node 𝑢 in a visited cycle, if ID[𝑢,𝐶] is smaller than StackSize[𝑢], we update both
Next[𝑢] and StackSize[𝑢] to ensure that the element corresponding to the last removed cycle in

S[𝑢] is retained for Next[𝑢] (Lines 9-11). After that, we add the neighbors of 𝐶 into the queue if

they have not been visited (Lines 12-14). We continue this process until the queue is empty. When

the process terminates, the Next vector records a spanning forest, and we erase all the removed

elements from S𝑡 to obtain S𝑡+1 (Line 15-16).
We analyze the correctness and time complexity of the landmark addition operation in the fol-

lowing lemmas. Specifically, we prove the correctness by establishing a one-to-one correspondence

between the updated loop-erased walks and the updated random walks.

Lemma 4.2. S𝑡+1 is still uniform in the updated graph G𝑡+1 after adding a landmark node 𝑣 .

Proof sketch.Derived from a loop-erased walk trajectory, the set of |U| V𝑙 -absorbed randomwalks

is updated by truncating at landmark node 𝑣 according to Lemma 3.2. Algorithm 5 maintains the

distributional equivalence of these walks to independently sampled walks by ensuring a one-to-one

correspondence between updated loop-erased and random walks. □

Lemma 4.3. Let 𝑃𝑟 [𝑠 { V𝑙 ; 𝑣] denote the probability that aV𝑙 -absorbed walk starts from 𝑠 passes
𝑣 . The time complexity of adding a landmark node 𝑣 is

∑
𝑠∈U𝑡 𝜏V𝑡

𝑙
[𝑣, 𝑠]𝑃𝑟 [𝑠 { V𝑡

𝑙
; 𝑣]. In real-life

graphs, this can be simplified to 𝑂 (1) by our assumption.

Proof sketch. The time complexity of Algorithm 5, dominated by the count of stack elements

removed upon updating with landmark node 𝑣 , aligns with ℎ(𝑣,V𝑡
𝑙
) and is further reduced to𝑂 (1)

in fast mixing graphs according to Lemma 3.1. □

Removing a landmark node 𝑣 .Moving a landmark node 𝑣 fromV𝑙 toU is the inverse operation

of adding a landmark node. In contrast to removing parts of loop-erased walks, we must resample

certain sections. We aim to perform the update locally, avoiding the resampling of the entire loop-

erased walk. Given the stack representation of the loop-erased walk walk S𝑡 , additional elements

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 36. Publication date: February 2025.

36:16 Meihao Liao, Cheng Li, Rong-Hua Li, & Guoren Wang

Algorithm 6: LEIndex-remove-landmark

Input: Graph G, landmark node set V𝑙 , a landmark node 𝑣, a loop-erased walk trajectory S𝑡 , a spanning forest F𝑡 stored in a

vector Next, a cycle set C𝑡
Output: Updated loop-erased walk trajectory S𝑡+1 , updated spanning forest F𝑡+1 , updated cycle set C𝑡+1

1 Seen[𝑢] ← False, InTree[𝑢] ← True for 𝑢 ∈ V;

2 Q ← ∅;
3 InTree[𝑣] ← False, Q.push(𝑣);
4 while Q is not empty do
5 𝑢 ← Q.𝑝𝑜𝑝 () , cur← 𝑢;

6 while cur ∉ V𝑙 \ {𝑣} do
7 if Seen[cur] then
8 finder← cur,𝐶 ← ∅;
9 do
10 𝐶.pushback(finder, S[finder] .𝑠𝑖𝑧𝑒 ()) ;
11 S[finder] .pushback(𝐶) ;
12 Seen[finder] ← False;
13 if InTree[finder] then
14 InTree[finder] ← False, Q.push(finder);
15 finder← Next[finder];
16 while finder! = cur;
17 add cycle𝐶 to C𝑡 ;
18 Seen[cur] ← True;
19 if !InTree[cur] then
20 Next[cur] ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (cur) ;
21 cur← Next[cur];
22 cur← 𝑢;

23 while cur ∉ V𝑙 \ {𝑣} do
24 InTree[cur] ← True, cur← Next[cur];

25 return S𝑡 , Next, C𝑡 ;

need to be added to the stacks. Since the order of visiting loops in the Wilson algorithm is irrelevant,

we adjust the order to ensure that C𝑡 has been visited first. Consequently, only the cycles in C𝑡+1\C𝑡
needs to be further sampled. We use a stack Q to process the nodes, which correctly implements

this ordering.

The pseudo-code of our algorithm is presented in Algorithm 6. At a high level, our algorithm

continues the Wilson algorithm from node 𝑣 . For the first time a node is visited, we reuse the

neighbors stored on the top of the stacks. Otherwise, we sample random neighbors as the Wilson

algorithm does. Specifically, given the current stack representation of loop-erased walk S𝑡 , we
employ a queue Q to maintain the nodes that are marked as outside the spanning forest F 𝑡

and

require further sampling. We start by adding node 𝑣 into Q (Line 3). Then, similar to Algorithm 4,

we continue the same process to simulate loop-erased walks until it hits F (Line 6-24). During this

random walk process, if InTree[𝑢] is True for a node 𝑢 encountered, the random walk will directly

use the element on the top of the stack of node 𝑢. Originally, this element represents an edge in the

sampled spanning forest; now it is reused to construct possible cycles (Lines 19-20). When a cycle

is constructed, it indicates that the original edges in the spanning forest form a cycle. Thus, the

InTree value of all the nodes in that cycle should be further marked False, requiring more steps of

random walk until it hits F again. Therefore, besides recording the cycle, we set InTree[𝑢] = False
for all nodes 𝑢 in that cycle and add them into Q (Lines 13-14). If the current node 𝑢 satisfies

InTree[𝑢] = False, we sample a new neighbor of 𝑢 instead of using the Next vector (Line 19-20).
The algorithm terminates when the queue Q is empty, indicating that all nodes are added into the

new spanning forest F 𝑡+1
, and the loop-erased walk process is complete. The updated index S𝑡+1,

the spanning forest, and the cycle set C𝑡+1 are returned (Line 25).

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 36. Publication date: February 2025.

Efficient Index Maintenance for Effective Resistance Computation on Evolving Graphs 36:17

LEIndex RWIndex
(a) PowerGrid

(n=4,941)

100

101

102

103

104

105

106

Di
st

rib
ut

io
n

of
 u

pd
at

e
tim

e
co

m
pl

ex
ity

371.92

6.6 × 105

LEIndex RWIndex
(b) Hep-th
(n=8,638)

100

101

102

103

104

7.98

1.0 × 104

LEIndex RWIndex
(c) Astro-ph
(n=17,903)

100

101

102

103

104

3.21

1.2 × 104

LEIndex RWIndex
(d) EmailEnron

(n=33,696)

100

101

102

103

3.34

1.9 × 103

LEIndex RWIndex
(e) DBLP

(n=317,080)

100

101

102

103

104

105

106

9.50

7.5 × 105

LEIndex RWIndex
(f) Road-PA

(n=1,087,562)

101

103

105

107

109

1011

Di
st

rib
ut

io
n

of
 u

pd
at

e
tim

e
co

m
pl

ex
ity

1.2 × 105

5.9 × 1010

LEIndex RWIndex
(g) Youtube

(n=1,134,890)

100

101

102

103

104

1.96

4.7 × 103

LEIndex RWIndex
(h) Road-CA

(n=1,957,027)

101

103

105

107

109

1011

1.3 × 105

2.9 × 1011

LEIndex RWIndex
(i) Orkut

(n=3,072,442)

100

101

102

103

104

105

106

1.74

1.1 × 106

LEIndex RWIndex
(j) LiveJournal
(n=3,997,962)

100

101

102

103

104

105

106

5.06

9.9 × 105

Fig. 6. Distribution of the expected update time complexity for RWIndex and LEIndex (the quantities
ℎ(𝑣,V𝑡

𝑙
)∑𝑠∈U𝑡 𝑃𝑟 [𝑠 { V𝑡

𝑙
; 𝑣] and ∑

𝑠∈U𝑡 𝜏V𝑡
𝑙
[𝑣, 𝑠]𝑃𝑟 [𝑠 { V𝑡

𝑙
; 𝑣] reported in Lemma 3.3 and Lemma 4.3,

respectively).

The following lemmas analyze the correctness and time complexity of the landmark deletion

operation.

Lemma 4.4. S𝑡+1 is still uniform in the updated graph G𝑡+1 after removing a landmark node 𝑣 .

Lemma 4.5. Let 𝑃𝑟 [𝑠 { V𝑡
𝑙
(𝑣)] denote the probability that aV𝑡

𝑙
-absorbed walk from 𝑠 hitsV𝑡

𝑙
by

𝑣 . The expected time complexity of removing a landmark node 𝑣 is
∑

𝑠∈U𝑡+1 𝜏V𝑡+1
𝑙
[𝑣, 𝑠]𝑃𝑟 [𝑠 { V𝑡

𝑙
(𝑣)].

In real-life graphs, this can be simplified to 𝑂 (1) by our assumption.

Adding or deleting an edge 𝑒.When adding or deleting a landmark node or an edge 𝑒 = (𝑢, 𝑣),
similar to Algorithm 3, we first add 𝑢 and 𝑣 to the landmark node set by removing a part of loop-

erased walks. Subsequently, to ensure the size of the landmark node set remains at a reasonable

level, we remove the added landmark node by resampling a small portion of the loop-erased walks.

The expected time complexity for this operation remains 𝑂 (1) in real-life graphs.

Theoretical characterization of the proposed algorithms. According to [37], under the raipd

mixing and small diameter assumptions, both the proposed RWIndex and LEIndex have a𝑂 (𝑛)-size
index and can be built in 𝑂 (𝑛) time. Based on the index, they can support a query in 𝑂 (1) time.

According to our analysis, the indices can handle an edge update in 𝑂 (1) time under the same

assumptions. In all situations, LEIndex has strictly smaller index space, index building time, query

time and update complexity compared to RWIndex. To gain insight into the magnitude of the

update time complexity involved (whether it is 𝑂 (1)), we also conducted experiments to compute

the values of the expected time complexity as described in Lemma 3.3 and Lemma 4.3. Given that

the addition and removal of landmarks are dual operations, the time complexity of moving 𝑣 from

U toV𝑙 is equal to that of moving 𝑣 fromV𝑙 toU. We select the 10 highest degree nodes asV𝑙

and compute the values of the reported quantities for updating 1000 uniformly sampled landmarks.

We employed box plots to visualize the distribution of time overheads across 10 datasets described

in Table 1. The results are illustrated in Fig. 6. On social networks (excluding PowerGrid, Road-PA
and Road-CA, which are road networks), the values of LEIndex are less than 10, aligning with

the expected 𝑂 (1) time complexity. The values of RWIndex are often not very small, but they are

still significantly smaller than the node size 𝑛. The potential reason is that the theoretical 𝑂 (1)
time complexity of RWIndex may incorporate a significant hidden poly-log factor within the 𝑂

notation. On road networks, the values can even exceed 𝑛 due to the absence of rapid mixing and

small-world properties, which contradict our assumptions. We also note that the values of LEIndex
are consistently much lower than those of RWIndex, suggesting superior updating performance.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 36. Publication date: February 2025.

36:18 Meihao Liao, Cheng Li, Rong-Hua Li, & Guoren Wang

Moreover, even on road networks, LEIndex still shows a value much smaller than the node size 𝑛,

further demonstrates the high efficiency of our LEIndex maintenance algorithm.

Example 2. Fig. 5 provides an illustrative example of the dynamic update of the LEIndex as shown
in Fig. 2. Suppose that 𝑣2 is added as a landmark, as depicted in Fig. 5(a). When the landmark node
𝑣2 is added, we first identify 𝐶3 as the first cycle in the stack of 𝑣2. We then perform a BFS traversal
starting from 𝐶2 over the cycle graph GC , as shown in Fig. 4(b), and remove the cycles that are on top
of𝐶3, which is𝐶1 in this example. Finally, we designate the nodes in the last removed cycles as the new
top of the stacks. For 𝑣1, we make 𝑣2 ∈ 𝐶1 the top of the stack of 𝑣1, and similarly, we make 𝑣2 ∈ 𝐶3 the
top of the stack of 𝑣3. The updated cycle graph GC is illustrated in Fig. 5(b). When the landmark node
𝑣8 is removed, we restart the loop-erased walk process from aV𝑙 -absorbed walk originating from 𝑣8,
reusing the random neighbors in the stacks. After constructing a new cycle 𝐶9, it influences the stacks
of both 𝑣7 and 𝑣8. This is illustrated in Fig. 5(c) and Fig. 5(d).

Novelty of this paper compared to previous studies. In this paper, we focus on the problem

of dynamically maintaining the indices proposed in [37], which represent the SOTA index-based

method for effective resistance computation. The method in [37] builds on [35] by introducing

multiple landmark nodes. Compared to related work [35, 37, 63], the key contributions of our paper

are as follows: (i) To handle edge updates in the indices from [37], we propose a novel approach that

transforms edge update operations into landmark node update operations. This idea is original and

has not been explored in previous work, including [37]; (ii) Maintaining the loop-erased walk-based

index is particularly challenging due to the complexity of the loop-erased walk trajectory. To address

this, we propose a novel cycle decomposition technique that expresses the stack representation of

loop-erased walks in terms of cycles and forests. We show that these cycles form a directed acyclic

graph (DAG), enabling us to manage edge updates at the cycle level. Such intriguing and important

properties of loop-erased walk trajectories were not identified in [37, 63]; (iii) For both the random

walk-based and loop-erased walk-based indices, we present efficient algorithms capable of handling

both edge insertions and deletions. We provide a rigorous theoretical analysis of the correctness

and time complexity of these algorithms. Our approach maintains random walk and loop-erased

walk samples by exploring only a small portion of the indices near the updated edge. In contrast,

the random walk and loop-erased walk sampling techniques in [37] require recomputing the entire

index to accommodate edge updates.

Generalizability of the proposed approaches. It is worth noting that our loop-erased walk

maintenance technique is of independent interest and has the potential to accelerate various graph

computation tasks that rely on loop-erased walks, such as personalized PageRank computation

[36], electrical closeness centrality approximation [5, 49], and graph signal processing [46, 47]. For

example, as demonstrated in [36], loop-erased walks can also be used to construct a personalized

PageRank index. Since our technique inherently enables loop-erased walk samples to handle edge

updates, the LEIndex framework can be applied to maintain personalized PageRank indices as

well. Compared to the current SOTA method, FIRM [28], which is based on random walks, the

advantages of loop-erased walk index maintenance over random walk-based index maintenance

are similar to those highlighted in this paper. Initial experimental results for personalized PageRank

maintenance will be presented in Section 5.2. Furthermore, for more expressive graph models, such

as attributed graphs [70] and labeled property graphs [60], the definition of effective resistance is

not yet well-established. However, while personalized PageRank and effective resistance are distinct

concepts, both of them are grounded in random walks and graph matrices. Since personalized

PageRank algorithms are supported by widely-used graph databases such as Neo4J [62] and graph

processing systems like GraphX [23], our algorithms can likely be extended to these graph models

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 36. Publication date: February 2025.

Efficient Index Maintenance for Effective Resistance Computation on Evolving Graphs 36:19

Table 1. Datasets (¯𝑑 : average degree; 𝜏𝑟𝑤 = ®1𝑇 (I − PUU)−1®1: time complexity of the building of RWIndex;
𝜏𝑙𝑒 = Tr((I − PUU)−1): time complexity of the building of LEIndex)

Dataset 𝑛 𝑚 ¯𝑑 𝜏𝑟𝑤 𝜏𝑙𝑒 Dataset 𝑛 𝑚 ¯𝑑 𝜏𝑟𝑤 𝜏𝑙𝑒

PowerGrid 4,941 6,594 2.67 7.8 × 10
6

2.4 × 10
4 Road-PA 1,087,562 1,541,514 2.83 7.9 × 10

11
9.9 × 10

6

Hep-th 8,638 24,806 5.74 1.2 × 10
6

1.6 × 10
4 Youtube 1,134,890 2,987,624 5.27 1.1 × 10

8
1.8 × 10

6

Astro-ph 17,903 196,972 22 2.1 × 10
6

2.3 × 10
4 Road-CA 1,957,027 2,760,388 2.82 3.4 × 10

12
2.3 × 10

7

Email-enron 33,696 180,811 10.73 1.6 × 10
6

4.5 × 10
4 Orkut 3,072,441 117,185,083 76.28 3.2 × 10

9
3.1 × 10

6

DBLP 317,080 1,049,866 6.62 3.6 × 10
8

5.9 × 10
5 LiveJournal 3,997,962 34,681,189 17.35 4.3 × 10

9
5.1 × 10

6

in a similar manner. For instance, [38] discusses the implementation of PageRank algorithms in

practical property graphs, and given that our algorithms share similar operations, such as iteratively

querying neighbors, they can also be implemented in these systems. Similarly, the attributed random

walk model discussed in [64] could be adapted to define effective resistances and design efficient

algorithms for attributed graphs. These are potential directions for future work to extend the

algorithms proposed in this paper.

5 Experiments
5.1 Experimental setup

Datasets.We utilize 10 real-life datasets that are widely adopted in previous studies on effective

resistance computation [35, 37, 45, 65]. The detailed statistics of these datasets are shown in Table 1.

PowerGrid, Road-PA and Road-CA are road networks, which are the hard cases reported in [37],

while other datasets are social networks that are easier to handle. All these datasets can be obtained

from public sources [32]. To measure the performance of different methods under a dynamic setting,

we generate a query-update workload that consists of both queries and updates following [28]. For

each dataset, we first randomly shuffle the order of edges and use the first 90% of edges to build

the initial graph. Then, an update involves either (i) adding an edge uniformly at random from

the remaining 10% of edges; (ii) deleting an edge uniformly at random from the current graph. We

follow previous studies [28] in selecting a 90% proportion of edges in our experiments. Additionally,

we conduct experiments using an initial graph constructed with the first 75% of the edges. We vary

the proportion of updates to compare the performance of the algorithms under different dynamic

scenarios. A workload with 𝑥% updates means that 𝑥% of the operations are updates, which have

an equal probability of being either an edge addition or deletion, and (1 − 𝑥)% of the operations

are queries, where the query node pairs are uniformly generated from the current graph structure.

During the evolution process, the underlying graph structure is adjusted to ensure connectivity

by skipping any graph snapshots that are not connected. We set the number of operations in a

workload to 100.

Methods. For the problem of dynamic index maintenance for effective resistance computation,

we implement two proposed index maintenance methods, denoted by RWIndex and LEIndex,
as described in Section 3 and Section 4 respectively. We also implement two static versions of

these methods, which recompute the index from scratch using the state-of-the-art (SOTA) static
methods proposed in [37] when an update occurs. These are denoted as RWIndex-R and LEIndex-R
respectively. For all these methods, the sample size is set to

log𝑛

𝜖2
, and we set 𝜖 = 0.5 by default,

following [37]. Based on our assumption, the graph structure will retain the properties of real-life

graphs during the evolution process. Thus, we maintain the same sample size throughout the

dynamic process. For the query process, we also set the query sample size to
log𝑛

𝜖2
, in line with

previous studies [37]. For RWIndex and LEIndex, we combine V𝑙 -absorbed push (𝑟𝑚𝑎𝑥 = 10
−3
)

with V𝑙 -absorbed walk sampling (BiPush proposed in [37]) to enhance query performance. To

compute the ground-truth of the effective resistance value in each graph snapshot, we use the SOTA

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 36. Publication date: February 2025.

36:20 Meihao Liao, Cheng Li, Rong-Hua Li, & Guoren Wang

0 25 50 75 100
percentage of query

10 2

100

102

104

Running Time (sec)
LEIndex
LEIndex-R

RWIndex
RWIndex-R

(a) PowerGrid
0 25 50 75 100

percentage of query

10 2

100

102

104
Running Time (sec)

LEIndex
LEIndex-R

RWIndex
RWIndex-R

(b) Hep-th
0 25 50 75 100

percentage of query

10 1

101

103

105 Running Time (sec)
LEIndex
LEIndex-R

RWIndex
RWIndex-R

(c) Astro-ph
0 25 50 75 100

percentage of query

10 2

100

102

104

Running Time (sec)
LEIndex
LEIndex-R

RWIndex
RWIndex-R

(d) Email-enron
0 25 50 75 100

percentage of query

100

101

102

103

Running Time (sec)
LEIndex
LEIndex-R

RWIndex
RWIndex-R

(e) DBLP

0 25 50 75 100
percentage of query

102

103

104

Running Time (sec)
LEIndex
LEIndex-R

RWIndex
RWIndex-R

(f) Road-PA
0 25 50 75 100

percentage of query

100

101

102

103

104

Running Time (sec)
LEIndex
LEIndex-R

RWIndex
RWIndex-R

(g) Youtube
0 25 50 75 100

percentage of query

102

103

104

Running Time (sec)
LEIndex
LEIndex-R

RWIndex
RWIndex-R

(h) Road-CA
0 25 50 75 100

percentage of query

101

102

103

104

Running Time (sec)
LEIndex
LEIndex-R

RWIndex
RWIndex-R

(i) Orkut
0 25 50 75 100

percentage of query

101

102

103

104

Running Time (sec)
LEIndex
LEIndex-R

RWIndex
RWIndex-R

(j) LiveJournal

Fig. 7. General performance of different methods with various query-update workloads

index-free approach BiPush as proposed in [35]. We compare the quantity of the query result 𝑟 (𝑠, 𝑡)
with the exact result 𝑟 (𝑠, 𝑡) and use the relative error

|𝑟 (𝑠,𝑡)−𝑟 (𝑠,𝑡) |
𝑟 (𝑠,𝑡) to measure the query quality.

Following previous studies, we select the landmark node set using the Degree+ heuristic method

Degree+ proposed in [37]. We set the landmark node set size |V𝑙 | = 10 for social networks and

|V𝑙 | = 100 for road networks, in accordance with [37].

Experimental environment.We implement all the methods in C++. The experiments are con-

ducted on a server with a 2.2 GHz Intel Xeon CPU and 128 GB of memory.We run all the experiments

10 times and report the average results.

5.2 Experimental results

Exp-1: Results with different query-update workloads. We then evaluate the general per-

formance of the proposed methods under different query-update workloads. We vary 𝑥 from 0

to 100 and compare the running time of RWIndex and LEIndex. We also include the resampling

algorithms that recompute the index every time, denoted as RWIndex-R and LEIndex-R. The results
are shown in Fig. 7. On the large datasets (e)-(j), RWIndex is out of memory as it requires storing

the entire random walk trajectories. Thus, all the results of RWIndex in the six large datasets

are omitted. When the percentage of query increases, the running time of all methods decrease.

This indicates that the update time is larger than the query time. It can be seen that RWIndex
and LEIndex are significantly faster than their resampling counterparts on all datasets. Notably,

on LiveJournal, LEIndex-R takes 9, 354 seconds, while LEIndex only takes 23 seconds, which is

around 400 times faster. In general, LEIndex is always much faster than RWIndex. For example,

when 𝑥 = 50 on Astro-ph, RWIndex takes 40 seconds to process the workload, while LEIndex takes
only 10

−1
seconds. Although RWIndex theoretically exhibits 𝑂 (1) time complexity, its practical

performance is hindered by a large hidden poly-log factor within the 𝑂 notion (also indicated in

Fig. 6). However, the performance of LEIndex confirms our analysis that it has an 𝑂 (1) complexity

for updating, which only processes a small part of the graph. These results demonstrate the high

efficiency of the proposed LEIndex method.

Exp-2: Update performance. In this experiment, we only evaluate the index updating performance

of different methods. Specifically, we employ 100 updates and report the average update time. The

results are shown in Fig. 8(a). It can be seen that the update of LEIndex is much faster than both

LEIndex-R and RWIndex. For example, on a large graphOrkutwith 3 million nodes and 117 million

edges, LEIndex takes only 10
−1

seconds for each update, demonstrating its high efficiency. We also

compare the update time for adding and deleting edges. It can be seen in Fig. 8(b) that the update

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 36. Publication date: February 2025.

Efficient Index Maintenance for Effective Resistance Computation on Evolving Graphs 36:21

PowerGrid Hep-th
Astro-ph

Email-enron
DBLP

Road-PA
Youtube

Road-CA
Orkut

LiveJournal
10 3

10 2

10 1

100

101

102

A
ve

ra
ge

 U
pd

at
e

Ti
m

e
(s

ec
) LEIndex LEIndex-R RWIndex RWIndex-R

(a) Update performance

PowerGrid Hep-th
Astro-ph

Email-enron
DBLP

Road-PA
Youtube

Road-CA
Orkut

LiveJournal
10 3

10 2

10 1

100

101

102

Av
er

ag
e

U
pd

at
e

Ti
m

e
(s

ec
) LEIndex (Ins) LEIndex (Del) RWIndex (Ins) RWIndex (Del)

(b) Results of edge addition and deletion

Fig. 8. Update performance of different methods

PowerGrid Hep-th
Astro-ph

Email-enron
DBLP

Road-PA
Youtube

Road-CA
Orkut

LiveJournal
10 2

10 1

100

101

102

B
u

il
d

in
g

 T
im

e
(s

ec
)

LEIndex LEIndex in [37] RWIndex RWIndex in [37]

Fig. 9. Index building time of different methods
PowerGrid Hep-th

Astro-ph
Email-enron

DBLP
Road-PA

Youtube
Road-CA Orkut

LiveJournal10 1

100

101

102

103

104

105

Sp
ac

e
C

on
su

m
pt

io
n

(M
B

)

519x

37x
15x

25x

47x

575x

53x

142x 7x 27x56264x

2345x
1385x 915x

 Out of
Memory Graph LEIndex RWIndex

Fig. 10. Memory consumption of different methods

PowerGrid Hep-th
Astro-ph

Email-enron
DBLP

Road-PA
Youtube

Road-CA
Orkut

LiveJournal

10 3

10 2

10 1

100

101

Av
er

ag
e

Q
ue

ry
 T

im
e

(s
ec

) LEIndex
LEIndex in [37]

RWIndex
RWIndex in [37]

(a) Query time

PowerGrid Hep-th
Astro-ph

Email-enron
DBLP

Road-PA
Youtube

Road-CA
Orkut

LiveJournal

10 4

10 3

10 2

10 1

100

Av
er

ag
e

R
el

at
iv

e
E

rr
or

LEIndex LEIndex in [37] RWIndex RWIndex in [37]

(b) Accuracy result

Fig. 11. Query performance of different methods (𝑥 = 50)

times for edge addition and deletion are similar for both RWIndex and LEIndex, as we convert
the operations of edge updates to landmark node updates. These results confirms our theoretical

analysis in Sections 3 and 4.

Exp-3: Index building time. Notice that the index structure RWIndex and LEIndex in this paper is

very similar to that of [37], with the only difference being that we directly store the samples instead

of the numerical values. As a result, the modified index structure can handle dynamic updates

while the index structure in [37] can not. In this experiment, we compare the index building time of

RWIndex and LEIndex, as well as their static versions in [37]. The results are reported in Fig. 9. As

can be seen, the index building time of our index structures are slightly longer than those in [37],

since our methods require additional operations such as retracing cycles and stroing auxiliary data

structures to handle dynamic updates. On the other hand, the index building time of LEIndex is
several orders of magnitude times lower than that of RWIndex. On the largest dataset LiveJournal,
it takes only 10

2
seconds to build LEIndex, while RWIndex is out of memory on this dataset. These

results further demonstrate the high efficiency of the proposed LEIndex technique.

Exp-4: Query performance.We evaluate the query performance of our approaches by performing

100 queries with an update rate 50%. We also include the query performance results based on

the static index structures in [37]. Both the query time and accuracy results are compared, as

illustrated in Fig. 11. As shown in Fig. 11(a), the average query times for RWIndex and LEIndex are
comparable. They are both slightly higher than the static versions in [37], since we need to compute

the required matrices at the query phase. On most datasets, the time required for this computation

is negligible compared to the total query time. Furthermore, the results of accuracy, depicted using

a box plot in Fig. 11(b), show that all methods yield similar accuracy results. The box represents

the average relative error, and the lines indicate the maximum relative error. Both error results

of LEIndex are comparable to that of RWIndex, aligning with previous studies [37]. Our findings

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 36. Publication date: February 2025.

36:22 Meihao Liao, Cheng Li, Rong-Hua Li, & Guoren Wang

0 25 50 75 100
percentage of query

10 2

100

102

104 Running Time (sec)
LEIndex-90%
RWIndex-90%

LEIndex-75%
RWIndex-75%

(a) Hep-th

0 25 50 75 100
percentage of query

100

101

102

103 Running Time (sec)
LEIndex-90%
RWIndex-90%

LEIndex-75%
RWIndex-75%

(b) DBLP

Fig. 12. General performance of different algorithms
with smaller initial graph size

1 3 5 7 9
p(10 3)

10 1

100

101

102

103

Running Time (sec)

LEIndex
RWIndex

(a) Erdős–Rényi model

2.2 2.4 2.6 2.8 3.0
10 2

10 1

100

101

Running Time (sec)
LEIndex RWIndex

(b) power law graph model

Fig. 13. Results on synthetic graphs with varying pa-
rameters

indicate that LEIndex can achieve significant update time improvements while maintaining both

the query accuracy and index building time compared to the SOTA method throughout the graph

evolving process.

Exp-5: Memory consumption. Fig. 10 illustrates the memory consumption of all methods.

We compare the memory usage of different indices relative to the graph size. Above each box,

the space overhead of the indices compared to the graph size is indicated. As shown, RWIndex
requires storing entire random walk trajectories, leading to substantial memory consumption. For

instance, on the Hep-th dataset, the memory usage is 2345× the graph size, and on larger graphs,

RWIndex exceeds available memory. In contrast, LEIndex only stores a compact stack structure

that efficiently maintains all loop-erased walks, making it far more space-efficient than RWIndex.
Across all datasets, the maximum memory consumption of LEIndex is approximately 10 GB, which

is manageable on a standard PC. For most social networks, the space overhead is typically dozens

of times larger than the size of the graph. These results indicate that our index is space efficient.

Exp-6: Results with smaller initial graph size. In previous experiments, we followed the

approach in [28], dividing the datasets into two parts and randomly selecting the first 90% of edges

to construct the initial graph by default. In this experiment, we also evaluate the performance of

the algorithms with a smaller initial graph size. Specifically, we compare the overall performance

of the proposed RWIndex and LEIndex algorithms when using 75% of the initial edges against 90%.

Results for a small graph (Hep-th) and a large graph (DBLP) are shown in Fig. 12, with consistent

findings across other datasets. As shown, the performance of our algorithms does not significantly

change when starting with a smaller initial graph size. This is because the time complexities of

the algorithms are not directly related to the graph size but rather to the graph spectral properties

(see Lemma 3.3 and Lemma 4.3). As a result, overall performance may improve or decline slightly.

However, LEIndex consistently demonstrates superior performance, even with a smaller initial

graph size.

Exp-7: Results on synthetic graphs. In this experiment, we study the performance of our algo-

rithms on synthetic datasets with varying parameters. We select the commonly used Erdős–Rényi

model [11] and power law graph model [2] to generate synthetic graphs. For the Erdős–Rényi

model, there are two parameters 𝑛 and 𝑝 , which control the graph size and the probability of an

edge existence. We fix 𝑛 as 10
5
and vary 𝑝 from 1×10

−3
to 9×10

−3
. For the power-law graph model,

there are also two parameters 𝑛 and 𝛾 , which control the graph size and the power-law exponential

factor. We fix 𝑛 as 10
5
and vary 𝛾 from 2 to 3. We set the update rate as 50% by default. The results of

the general performance of RWIndex and LEIndex can be found in Fig. 13. It can be seen that when

𝑝 becomes larger and 𝛾 becomes smaller (which indicates that the graphs exhibit faster mixing),

the running time of our algorithms also become larger. This is consistent with our time complexity

analysis. Among all generated graphs, LEIndex exhibits a distinguished performance compared to

RWIndex.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 36. Publication date: February 2025.

Efficient Index Maintenance for Effective Resistance Computation on Evolving Graphs 36:23

Irini Fundulaki
Abderrahmane Khiat

Valentina Ivanova
Mina Abd Nikooie Pour

Catia Pesquita
Elena Kuss

Melanie Herschel

Cássia Trojahn dos Santos

Angelina Kouroubali

Yannis Theoharis
Vicky Papavassiliou

Laks V. S. Lakshmanan

Pierre-Yves Lalilgand

Maarten Marx

(a) Effective resistance

Irini Fundulaki
Abderrahmane Khiat

Valentina Ivanova
Mina Abd Nikooie Pour

Catia Pesquita
Elena Kuss

Melanie Herschel

Cássia Trojahn dos Santos

Angelina Kouroubali

Yannis Theoharis
Vicky Papavassiliou

Laks V. S. Lakshmanan

Pierre-Yves Lalilgand

Maarten Marx

(b) Personalized PageRank

Irini Fundulaki
Abderrahmane Khiat

Valentina Ivanova
Mina Abd Nikooie Pour

Catia Pesquita
Elena Kuss

Melanie Herschel

Cássia Trojahn dos Santos

Angelina Kouroubali

Yannis Theoharis
Vicky Papavassiliou

Laks V. S. Lakshmanan

Pierre-Yves Lalilgand

Maarten Marx

(c) Jaccard similarity

Irini Fundulaki
Abderrahmane Khiat

Valentina Ivanova
Mina Abd Nikooie Pour

Catia Pesquita
Elena Kuss

Melanie Herschel

Cássia Trojahn dos Santos

Angelina Kouroubali

Yannis Theoharis
Vicky Papavassiliou

Laks V. S. Lakshmanan

Pierre-Yves Lalilgand

Maarten Marx

(d) SimRank

Fig. 14. Case studies on DBLP

0 25 50 75 100
percentage of query

10 4

10 3

10 2

10 1

100 Running Time (sec)

LEIndex
FIRM

(a) Hep-th

0 25 50 75 100
percentage of query

10 3

10 2

10 1

100

101

102 Running Time (sec)

LEIndex
FIRM

(b) DBLP

Fig. 15. Results of personalized PageRank index maintenance by our LEIndex technique

Exp-8: Case studies. In this experiment, we perform a case study to evaluate the effectiveness of

using effective resistance as a similarity measure. We utilize the DBLP graph from the database

community, consisting of 62,150 nodes and 228,772 edges, which can be obtained from [32]. The

DBLP graph is a co-authorship network where each node represents an author, and each edge

represents a co-authorship. We compare effective resistance with other widely used similarity

measures, including personalized PageRank [22], Jaccard similarity [43] and SimRank [29] for the

task of link prediction. Specifically, we randomly remove 10% of the edges from the original graph

and compute single-source similarities for the endpoints of the removed edges. For each node,

we select the non-neighboring nodes with the top 100 highest similarity scores as the predicted

co-authors, and measure accuracy by calculating the proportion of removed edges that are correctly

predicted. The results show accuracy rates of 82.4%, 85.7%, 64.9% and 33.5% for effective resistance,

personalized PageRank, Jaccard similarity and SimRank, respectively. Thus, effective resistance

demonstrates strong predictive accuracy among these measures. We further illustrate the results

with a specific case: the prediction of co-authors for author "Irini Fundulaki". As can be seen in

Fig. 14, orange edges connecting to green nodes represent successfully predicted co-authorships,

while grey nodes indicate co-authors that were not predicted. As shown, effective resistance predicts

the most co-authors compared to other similarity measures. This highlights its potential for link

prediction, as also discussed in [8, 16, 44, 69].

Exp-9: Results of personalized PageRank index maintenance. As we have discussed in

Section 4, besides effective resistance index maintenance, our LEIndex technique also has the

potential to improve the existing personalized PageRank index maintenance algorithms [28]. In

this experiment, we report several initial experimental results. Since the loop-erased walk-based

index was experimentally proved to be better than the random walk-based index in terms of index

building time, query speed and query accuracy in [36], we focus on studying the index maintenance

efficiency for personalized PageRank. We compare our algorithm LEIndex with the SOTA method

FIRM, whose original implementation is open-source [28]. We set 𝛼 = 0.1 by default and compare

the running time of LEIndex and FIRM under different workloads. We show the results on Hep-th
and DBLP. The results on other datasets are consistent. As shown in Fig. 15, our LEIndex technique
can achieve a significant speedup compared to FIRM [28]. Different from effective resistance, the

running time of personalized PageRank maintenance increases when the update rate increases.

This is because personalized PageRank index update is much faster than query processing. For

example, on DBLP, LEIndex is an order of magnitude faster than FIRM when performing only

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 36. Publication date: February 2025.

36:24 Meihao Liao, Cheng Li, Rong-Hua Li, & Guoren Wang

updates. This validates our claim that the loop-erased walk-based index can be utilized to improve

the personalized PageRank index maintenance.

6 Related work

Effective resistance computation. Effective resistance computation is a fundamental problem

in graph analysis. In the theoretical community, numerous algorithms have been proposed for

computing effective resistance on both static and dynamic graphs [13, 19, 24, 25, 27, 51, 57]. Most of

these theoretical solutions primarily aim to improve the worst-case complexity of the problem, but

they often perform worse than recently-proposed practical algorithms [35, 37, 45, 65]. For instance,

[45] proposes several local algorithms for answering single-pair effective resistance queries, which

can compute effective resistance by exploiting only a part of the graph. [65] further enhance the

efficiency of effective resistance computation by reducing the estimator’s variance. Liao et al. [35]

introduce a landmark-based local algorithm for efficiently processing single-pair and single-source

effective resistance queries, and they recently generalize this approach using multiple landmark

techniques to develop an index-based solution [37]. This index-based approach represents the

SOTA method for computing effective resistance. However, their method cannot handle dynamic

graphs. We are the first to propose an index maintenance method for processing effective resistance

queries on evolving graphs.

Dynamic algorithms for PPR computation.Although index maintenance for effective resistance

computation has not been extensively studied, there is a rich body of research on similar problems,

such as personalized PageRank (PPR) computation [7, 40, 52, 66, 67]. Personalized PageRank is

a well-explored topic in graph data management [3, 4, 30, 36, 41, 42, 55, 61]. There are several

dynamic algorithms proposed for computing the PPR in the literature. For example, [28] introduces

an index-based method for personalized PageRank computation on evolving graphs, including

efficient algorithms for maintaining a set of 𝛼-random walks. Other techniques, like dynamic push

[7, 66], focus primarily on maintaining a single-source PPR vector. Notably, existing solutions are

limited to single-source PPR computation and do not address our specific challenge of efficiently

answering single-pair effective resistance queries on dynamic graphs. To the best of our knowledge,

our work is the first practical index maintenance method for computing effective resistance on

evolving graphs.

7 Conclusion
In this work, we investigate the index maintenance problem for effective resistance computation

on evolving graphs. Unlike existing matrices-based index, we propose two new index structure,

namely RWIndex and LEIndex, which maintain the samples of random walks and loop-erased

random walks respectively. To efficiently maintain RWIndex and LEIndex, we propose a novel

approach that transforms edge updates using a newly-developed landmark node update technique.

For maintaining LEIndex, we present a novel and powerful cycle decomposition technique that

allows us to maintain the index at the cycle level rather than the node level, significantly enhancing

efficiency.We also prove that both of our maintenance algorithms for RWIndex and LEIndex achieve
𝑂 (1) time complexity per edge update. Extensive experiments on real-world graphs demonstrate

the high efficiency of our solutions.

Acknowledgments
This work is supported by the NSFC Grant U2241211. Rong-Hua Li is the corresponding author of

this paper.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 36. Publication date: February 2025.

Efficient Index Maintenance for Effective Resistance Computation on Evolving Graphs 36:25

References
[1] Ittai Abraham, David Durfee, Ioannis Koutis, Sebastian Krinninger, and Richard Peng. 2016. On Fully Dynamic Graph

Sparsifiers. In FOCS. 335–344.
[2] William Aiello, Fan Chung, and Linyuan Lu. 2001. A random graph model for power law graphs. Experimental

mathematics 10, 1 (2001), 53–66.
[3] Reid Andersen, Christian Borgs, Jennifer T. Chayes, John E. Hopcroft, Vahab S. Mirrokni, and Shang-Hua Teng. 2007.

Local Computation of PageRank Contributions. InWAW. 150–165.

[4] Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. 2006. Local Graph Partitioning using PageRank Vectors. In FOCS.
475–486.

[5] Eugenio Angriman, Maria Predari, Alexander van der Grinten, and Henning Meyerhenke. 2020. Approximation of the

Diagonal of a Laplacian’s Pseudoinverse for Complex Network Analysis. In ESA, Vol. 173. 6:1–6:24.
[6] Luca Avena and Alexandre Gaudillière. 2018. Two applications of random spanning forests. Journal of Theoretical

Probability 31, 4 (2018), 1975–2004.

[7] Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. 2010. Fast Incremental and Personalized PageRank. Proc.
VLDB Endow. 4, 3 (2010), 173–184.

[8] Bryn Balls-Barker and Benjamin Webb. 2020. Link prediction in networks using effective transitions. Linear Algebra
Appl. 599 (2020), 79–104.

[9] Ravindra B Bapat. 2010. Graphs and matrices. Vol. 27.
[10] Esteban Bautista and Matthieu Latapy. 2022. A local updating algorithm for personalized PageRank via Chebyshev

polynomials. Soc. Netw. Anal. Min. 12, 1 (2022), 31.
[11] Béla Bollobás and Béla Bollobás. 1998. Random graphs.
[12] Enrico Bozzo and Massimo Franceschet. 2013. Resistance distance, closeness, and betweenness. Soc. Networks 35, 3

(2013), 460–469.

[13] Dongrun Cai, Xue Chen, and Pan Peng. 2023. Effective Resistances in Non-Expander Graphs. In ESA, Vol. 274.
29:1–29:18.

[14] Li Chen, Rasmus Kyng, Yang P. Liu, Simon Meierhans, and Maximilian Probst Gutenberg. 2024. Almost-Linear Time

Algorithms for Incremental Graphs: Cycle Detection, SCCs, s-t Shortest Path, and Minimum-Cost Flow. In STOC.
1165–1173.

[15] Fan Chung and Ji Zeng. 2023. Forest formulas of discrete Green’s functions. Journal of Graph Theory 102, 3 (2023),

556–577.

[16] Manuel Curado. 2020. Return random walks for link prediction. Information Sciences 510 (2020), 99–107.
[17] Persi Diaconis and William Fulton. 1991. A growth model, a game, an algebra, Lagrange inversion, and characteristic

classes. Rend. Sem. Mat. Univ. Pol. Torino 49, 1 (1991), 95–119.
[18] David Durfee, Yu Gao, Gramoz Goranci, and Richard Peng. 2019. Fully dynamic spectral vertex sparsifiers and

applications. In STOC. 914–925.
[19] Rajat Vadiraj Dwaraknath, Ishani Karmarkar, and Aaron Sidford. 2023. Towards Optimal Effective Resistance Estimation.

In NIPS.
[20] Katherine Fitch and Naomi Ehrich Leonard. 2013. Information centrality and optimal leader selection in noisy networks.

In CDC. 7510–7515.
[21] Yu Gao, Yang P. Liu, and Richard Peng. 2021. Fully Dynamic Electrical Flows: Sparse Maxflow Faster Than Goldberg-Rao.

In FOCS. 516–527.
[22] David F. Gleich. 2015. PageRank Beyond the Web. SIAM Rev. 57, 3 (2015), 321–363.
[23] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J. Franklin, and Ion Stoica. 2014. GraphX:

Graph Processing in a Distributed Dataflow Framework. In OSDI. 599–613.
[24] Gramoz Goranci, Monika Henzinger, and Pan Peng. 2018. Dynamic Effective Resistances and Approximate Schur

Complement on Separable Graphs. In ESA, Vol. 112. 40:1–40:15.
[25] Craig Gotsman and Kai Hormann. 2023. Efficient Point-to-Point Resistance Distance Queries in Large Graphs. J. Graph

Algorithms Appl. 27, 1 (2023), 35–44.
[26] Takanori Hayashi, Takuya Akiba, and Yuichi Yoshida. 2016. Efficient Algorithms for Spanning Tree Centrality. In

IJCAI. 3733–3739.
[27] Monika Henzinger, Billy Jin, Richard Peng, and David P. Williamson. 2023. A Combinatorial Cut-Toggling Algorithm

for Solving Laplacian Linear Systems. Algorithmica 85, 12 (2023), 3680–3716.
[28] Guanhao Hou, Qintian Guo, Fangyuan Zhang, Sibo Wang, and Zhewei Wei. 2023. Personalized PageRank on Evolving

Graphs with an Incremental Index-Update Scheme. Proc. ACM Manag. Data 1, 1 (2023), 25:1–25:26.
[29] Glen Jeh and Jennifer Widom. 2002. SimRank: a measure of structural-context similarity. In KDD. 538–543.
[30] Jinhong Jung, Namyong Park, Lee Sael, and U Kang. 2017. BePI: Fast and Memory-Efficient Method for Billion-Scale

Random Walk with Restart. In SIGMOD. 789–804.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 36. Publication date: February 2025.

36:26 Meihao Liao, Cheng Li, Rong-Hua Li, & Guoren Wang

[31] Rasmus Kyng and Sushant Sachdeva. 2016. Approximate Gaussian Elimination for Laplacians - Fast, Sparse, and

Simple. In FOCS. 573–582.
[32] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. http://snap.stanford.

edu/data.

[33] Huan Li, Richard Peng, Liren Shan, Yuhao Yi, and Zhongzhi Zhang. 2019. Current Flow Group Closeness Centrality

for Complex Networks. In WWW. 961–971.

[34] Meihao Liao, Cheng Li, Rong-Hua Li, and Guoren Wang. 2024. Efficient Index Maintenance for Effective Resistance

Computation on Evolving Graphs. Full version: https://github.com/mhliao0516/LEindex (2024).

[35] Meihao Liao, Rong-Hua Li, Qiangqiang Dai, Hongyang Chen, Hongchao Qin, and Guoren Wang. 2023. Efficient

Resistance Distance Computation: The Power of Landmark-based Approaches. Proc. ACM Manag. Data 1, 1 (2023),
68:1–68:27.

[36] Meihao Liao, Rong-Hua Li, Qiangqiang Dai, and Guoren Wang. 2022. Efficient Personalized PageRank Computation: A

Spanning Forests Sampling Based Approach. In SIGMOD. 2048–2061.
[37] Meihao Liao, Junjie Zhou, Rong-Hua Li, Qiangqiang Dai, Hongyang Chen, and Guoren Wang. 2024. Efficient and

Provable Effective Resistance Computation on Large Graphs: An Index-based Approach. Proc. ACM Manag. Data 2, 3
(2024), 133.

[38] Seung-Hwan Lim, Sangkeun Lee, Gautam Ganesh, Tyler C. Brown, and Sreenivas R. Sukumar. 2015. Graph Processing

Platforms at Scale: Practices and Experiences. In ISPAS. 42–51.
[39] Yang Liu, Chuan Zhou, Shirui Pan, Jia Wu, Zhao Li, Hongyang Chen, and Peng Zhang. 2023. CurvDrop: A Ricci

Curvature Based Approach to Prevent Graph Neural Networks from Over-Smoothing and Over-Squashing. In WWW.

221–230.

[40] Peter Lofgren. 2014. On the complexity of the Monte Carlo method for incremental PageRank. Inf. Process. Lett. 114, 3
(2014), 104–106.

[41] Peter Lofgren, Siddhartha Banerjee, and Ashish Goel. 2016. Personalized PageRank Estimation and Search: A Bidirec-

tional Approach. InWSDM. 163–172.

[42] Takanori Maehara, Takuya Akiba, Yoichi Iwata, and Ken-ichi Kawarabayashi. 2014. Computing Personalized PageRank

Quickly by Exploiting Graph Structures. VLDB 7, 12 (2014), 1023–1034.

[43] Suphakit Niwattanakul, Jatsada Singthongchai, Ekkachai Naenudorn, and Supachanun Wanapu. 2013. Using of

Jaccard coefficient for keywords similarity. In Proceedings of the international multiconference of engineers and computer
scientists, Vol. 1. 380–384.

[44] Benjamin Pachev and Benjamin Webb. 2018. Fast link prediction for large networks using spectral embedding. Journal
of Complex Networks 6, 1 (2018), 79–94.

[45] Pan Peng, Daniel Lopatta, Yuichi Yoshida, and Gramoz Goranci. 2021. Local Algorithms for Estimating Effective

Resistance. In KDD. 1329–1338.
[46] Yusuf Yigit Pilavci, Pierre-Olivier Amblard, Simon Barthelmé, and Nicolas Tremblay. 2020. Smoothing Graph Signals

via Random Spanning Forests. In ICASSP. 5630–5634.
[47] Yusuf Yigit Pilavci, Pierre-Olivier Amblard, Simon Barthelmé, and Nicolas Tremblay. 2021. Graph Tikhonov Reg-

ularization and Interpolation Via Random Spanning Forests. IEEE Trans. Signal Inf. Process. over Networks (2021),
359–374.

[48] Jim Pitman and Wenpin Tang. 2018. Tree formulas, mean first passage times and Kemeny’s constant of a Markov

chain. Bernoulli 24, 3 (2018), 1942 – 1972.

[49] Maria Predari, Lukas Berner, Robert Kooij, and Henning Meyerhenke. 2023. Greedy optimization of resistance-based

graph robustness with global and local edge insertions. Soc. Netw. Anal. Min. 13, 1 (2023), 130.
[50] Gyan Ranjan, Zhi-Li Zhang, and Daniel Boley. 2014. Incremental Computation of Pseudo-Inverse of Laplacian. In

Combinatorial Optimization and Applications (Lecture Notes in Computer Science, Vol. 8881). 729–749.
[51] Sushant Sachdeva and Yibin Zhao. 2023. A Simple and Efficient Parallel Laplacian Solver. In SPAA. 315–325.
[52] Scott Sallinen, Juntong Luo, and Matei Ripeanu. 2023. Real-Time PageRank on Dynamic Graphs. In HPDC. 239–251.
[53] Aaron Schild. 2018. An almost-linear time algorithm for uniform random spanning tree generation. In STOC. 214–227.
[54] Jieming Shi, Nikos Mamoulis, Dingming Wu, and David W. Cheung. 2014. Density-based place clustering in geo-social

networks. In SIGMOD. 99–110.
[55] Kijung Shin, Jinhong Jung, Lee Sael, and U Kang. 2015. BEAR: Block Elimination Approach for Random Walk with

Restart on Large Graphs. In SIGMOD, Timos K. Sellis, Susan B. Davidson, and Zachary G. Ives (Eds.). 1571–1585.

[56] Ali Kemal Sinop, Lisa Fawcett, Sreenivas Gollapudi, and Kostas Kollias. 2021. Robust Routing Using Electrical Flows.

In SIGSPATIAL. 282–292.
[57] Daniel A. Spielman and Nikhil Srivastava. 2008. Graph sparsification by effective resistances. In STOC. 563–568.
[58] Prasad Tetali. 1991. Random walks and the effective resistance of networks. Journal of Theoretical Probability 4, 1

(1991), 101–109.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 36. Publication date: February 2025.

http://snap.stanford.edu/data
http://snap.stanford.edu/data

Efficient Index Maintenance for Effective Resistance Computation on Evolving Graphs 36:27

[59] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M. Bronstein. 2022.

Understanding over-squashing and bottlenecks on graphs via curvature. In ICLR.
[60] Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi. 2016. PGQL: a property graph query

language. In GRADES. 7.
[61] Sibo Wang, Renchi Yang, Xiaokui Xiao, Zhewei Wei, and Yin Yang. 2017. FORA: Simple and Effective Approximate

Single-Source Personalized PageRank. In KDD. 505–514.
[62] Jim Webber. 2012. A programmatic introduction to Neo4j. In SPLASH. 217–218.
[63] David Bruce Wilson. 1996. Generating Random Spanning Trees More Quickly than the Cover Time. In STOC. 296–303.
[64] Renchi Yang, Jieming Shi, Yin Yang, Keke Huang, Shiqi Zhang, and Xiaokui Xiao. 2021. Effective and Scalable Clustering

on Massive Attributed Graphs. InWWW. 3675–3687.

[65] Renchi Yang and Jing Tang. 2023. Efficient Estimation of Pairwise Effective Resistance. Proc. ACM Manag. Data 1, 1
(2023), 16:1–16:27.

[66] Minji Yoon, Woojeong Jin, and U Kang. 2018. Fast and Accurate Random Walk with Restart on Dynamic Graphs with

Guarantees. InWWW. 409–418.

[67] Hongyang Zhang, Peter Lofgren, and Ashish Goel. 2016. Approximate Personalized PageRank on Dynamic Graphs. In

KDD. 1315–1324.
[68] Yanping Zheng, Hanzhi Wang, Zhewei Wei, Jiajun Liu, and Sibo Wang. 2022. Instant Graph Neural Networks for

Dynamic Graphs. In KDD. 2605–2615.
[69] Kai Zhou, Tomasz P. Michalak, Marcin Waniek, Talal Rahwan, and Yevgeniy Vorobeychik. 2019. Attacking Similarity-

Based Link Prediction in Social Networks. In AAMAS. 305–313.
[70] Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. 2009. Graph Clustering Based on Structural/Attribute Similarities. VLDB

2, 1 (2009), 718–729.

Received July 2024; revised September 2024; accepted November 2024

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 36. Publication date: February 2025.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Multiple landmark-based index approach

	3 Random-walk index Maintenance
	3.1 A random walk index: RWIndex
	3.2 Maintaining RWIndex

	4 Loop-erased random walk Index Maintenance
	4.1 The proposed LEIndex index
	4.2 Cycle decomposition of LEIndex
	4.3 Maintaining LEIndex

	5 Experiments
	5.1 Experimental setup
	5.2 Experimental results

	6 Related work
	7 Conclusion
	Acknowledgments
	References

